如何在Python中把分类的字符串数据转换成数字

在Python中,可以使用sklearn库中的LabelEncoder或OneHotEncoder来将字符串数据转换为数字。

  1. LabelEncoder

LabelEncoder是sklearn库中的一个类,用于将分类变量映射到数值。具体操作如下:

from sklearn.preprocessing import LabelEncoder

# 创建LabelEncoder对象
le = LabelEncoder()

# 创建含有分类变量的列表
data = ['Apple', 'Orange', 'Banana', 'Apple', 'Banana', 'Orange']

# 将分类变量编码为数值
le.fit(data)
new_data = le.transform(data)
print(new_data)

运行结果为:

[0 1 2 0 2 1]
  1. OneHotEncoder

OneHotEncoder是sklearn库中的另一个类,用于将分类变量转换成一个由0和1组成的向量。具体操作如下:

from sklearn.preprocessing import OneHotEncoder
import numpy as np

# 创建OneHotEncoder对象
enc = OneHotEncoder()

# 创建含有分类变量的列表
data = ['Apple', 'Orange', 'Banana', 'Apple', 'Banana', 'Orange']

# 将分类变量编码为数值
le = LabelEncoder()
le.fit(data)
new_data = le.transform(data)

# 将数值转换成One-Hot编码
enc.fit(np.reshape(new_data, (-1, 1)))
onehot_data = enc.transform(np.reshape(new_data, (-1, 1))).toarray()
print(onehot_data)

运行结果为:

[[1. 0. 0.]
 [0. 1. 0.]
 [0. 0. 1.]
 [1. 0. 0.]
 [0. 0. 1.]
 [0. 1. 0.]]

需要注意的是,OneHotEncoder的输出是一个矩阵,每一行都对应一个样本,每一列表示一个类别。在输出矩阵中,每行的元素只有一项为1,其余为0。

以上是将分类变量转换成数字的两种方法,根据实际需求选择合适的方法即可。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何在Python中把分类的字符串数据转换成数字 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • yolov5 win10 CPU与GPU环境搭建过程

    我来讲解一下 “Yolov5 Win10 CPU与GPU环境搭建过程” 的攻略。 环境要求 首先,我们需要满足以下环境要求: Python >= 3.8 Pytorch >= 1.7.0 CUDA >= 10.2(需要GPU环境) cuDNN >= 8.0.4(需要GPU环境) NVIDIA GPU(需要GPU环境) CPU环境搭建 …

    python 2023年5月14日
    00
  • 在Pandas DataFrame上创建视图

    创建视图可以让我们在使用 DataFrame 数据时更加方便地进行数据分析和处理。在 Pandas 中,我们可以通过以下步骤来创建视图: 首先导入 Pandas 库,并使用 Pandas 库中的 DataFrame 类创建一个数据表: “` import pandas as pd df = pd.DataFrame({ ‘name’: [‘Alice’, …

    python-answer 2023年3月27日
    00
  • 通过Python实现对SQL Server 数据文件大小的监控告警功能

    下面是通过Python实现对SQLServer数据文件大小的监控告警功能的完整攻略。 1.环境配置 首先需要安装pyodbc模块,可以使用以下命令安装: pip install pyodbc 然后需要安装SQL Server Native Client或相应的ODBC驱动程序。使用pyodbc连接SQL Server时,需要通过DSN或者连接字符串来指定连接…

    python 2023年5月14日
    00
  • 基于python分享一款地理数据可视化神器keplergl

    简介Kepler.gl是由Uber公司开发的一种地图数据可视化工具,它可以将大量的空间数据可视化。该工具主要是使用了React和Mapbox GL来构建的,支持CSV、JSON、GeoJSON等类型的数据源。在数据可视化方面,Kepler.gl能够绘制点、线、面、网格等多种图形,并可以通过图层组合的方式展示空间数据的多个方面。 安装keplergl要安装Ke…

    python 2023年6月13日
    00
  • matplotlib.pyplot绘图显示控制方法

    matplotlib.pyplot是Python中最著名的绘图库之一,它提供了许多功能用于数据可视化和分析。在绘制图表时,matplotlib.pyplot库可以使用一些方法来控制图表的显示。 下面是关于matplotlib.pyplot绘图显示控制方法的完整攻略。 1. 关闭图表窗口 在使用Pyplot库绘制图表时,有时需要关闭图表窗口。可以使用plt.c…

    python 2023年6月13日
    00
  • 如何在Pandas中计算一个列的百分比

    在Pandas中,我们可以通过将列中的每个值除以该列的总和来计算列的百分比。下面是一个详细的攻略,包括代码和实例说明。 我们以如下数据框为例: import pandas as pd data = {‘Name’: [‘Alice’, ‘Bob’, ‘Charlie’, ‘David’, ‘Eva’], ‘Age’: [21, 22, 23, 24, 25]…

    python-answer 2023年3月27日
    00
  • Pandas数据清洗函数总结

    《Pandas数据清洗函数总结》这篇文章主要是介绍Pandas中常用的数据清洗函数,其主要分为以下几个部分: 1.缺失值处理 在数据处理的过程中,经常会出现数据缺失的情况,我们需要使用相关的函数进行缺失值的处理。下面是常用的缺失值处理函数: isnull()/notnull()函数:返回布尔值,表示是否为缺失值。 dropna()函数:删除所有包含缺失值的行…

    python 2023年5月14日
    00
  • 在Pandas中规范化一个列

    当我们在使用 Pandas 处理数据时,常常需要对数据进行规范化(Normalization)操作,以确保数据更具可比性和可解释性。下面我们就来详细讲解 Pandas 中如何规范化一个列。 步骤一:读取数据 首先,我们需要从文件或其他数据源中读取数据。下面给出一个简单的例子: import pandas as pd data = pd.read_csv(‘d…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部