如何计算Pandas中NaN值的数量

计算Pandas中NaN值的数量,可以使用isna()方法和sum()方法配合使用。具体步骤如下:

1. 导入Pandas库

import pandas as pd

2. 读取数据

首先需要读入数据,例如下面的例子读取了一个包含NaN值的数据集:

data = pd.read_csv('data.csv')

3. 计算NaN值的数量

使用isna()方法筛选数据集中的NaN值,该方法会返回一个布尔型的DataFrame或Series。我们可以使用sum()方法统计True的数量,即NaN值的数量。

# 对DataFrame进行计算
data.isna().sum()

# 对单独的Series进行计算
data['column_name'].isna().sum()

4. 示例

下面使用一个示例来演示具体实现过程。

import pandas as pd

# 读取数据
df = pd.read_csv('https://raw.githubusercontent.com/charleyferrari/CUNY_DATA_602/master/module2/data/msas.csv')

# 统计NaN值的数量
n_missing = df.isna().sum().sum()

print("数据集中一共有{}个NaN值".format(n_missing))

输出结果如下:

数据集中一共有2个NaN值

以上就是计算Pandas中NaN值数量的详细攻略。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何计算Pandas中NaN值的数量 - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 在Python Pandas中获取列的数据类型

    在Python Pandas中,我们可以通过dtypes属性获取数据框中各列数据的数据类型。此外,我们也可以使用info()方法来获取每列数据的数据类型和空值情况。 以下是一个示例数据框: import pandas as pd df = pd.DataFrame({‘col1’: [1, 2, 3], ‘col2’: [‘a’, ‘b’, ‘c’], ‘c…

    python-answer 2023年3月27日
    00
  • elasticsearch索引index数据功能源码示例

    让我来为你详细讲解“elasticsearch索引index数据功能源码示例”的完整攻略。 1. 什么是Elasticsearch索引? 在Elasticsearch中,索引被称为数据存储的容器。它是将数据储存到Elasticsearch中的基本单元。我们可以将索引理解为数据库中的表,数据都是存储在表中的。在Elasticsearch中,我们可以通过索引存储…

    python 2023年6月13日
    00
  • 如何在Pandas数据框架中把整数转换为日期时间

    将整数转换为日期时间在Pandas数据框架中非常常见,下面是具体步骤: 导入必要的库 import pandas as pd from datetime import datetime, timedelta 假设我们有一个整形数据帧df,其中“日期”列是整数形式,表示从2000年1月1日以来的天数。我们将使用以下代码将其转换为日期时间: df[‘日期’] =…

    python-answer 2023年3月27日
    00
  • 如何在Python中把分类的字符串数据转换成数字

    在Python中,可以使用sklearn库中的LabelEncoder或OneHotEncoder来将字符串数据转换为数字。 LabelEncoder LabelEncoder是sklearn库中的一个类,用于将分类变量映射到数值。具体操作如下: from sklearn.preprocessing import LabelEncoder # 创建Label…

    python-answer 2023年3月27日
    00
  • python中pymysql的executemany使用方式

    下面是关于“python中pymysql的executemany使用方式”的完整攻略。 1. pymysql介绍 pymysql是Python下的一个MySQL驱动,可以实现Python与MySQL数据库的交互。它实现了Python DB API 2.0规范,至于DB API 2.0规范的内容,可以在官网查看。 2. executemany概述 在使用pym…

    python 2023年6月13日
    00
  • Pandas时间数据处理详细教程

    当涉及到数据分析和可视化的时候, 时间数据是一种常见的数据类型。python中的Pandas库提供了强大的时间数据处理工具,可以轻松地解析和操作时间数据。本文将为大家介绍Pandas时间数据处理的详细教程,包括以下内容: Pandas中的时间数据类型 Pandas提供了两种内置的时间数据类型:Timestamp和DatetimeIndex。Timestamp…

    python 2023年5月14日
    00
  • Python使用Pandas对csv文件进行数据处理的方法

    首先,需要安装Pandas库,可以使用以下命令进行安装: pip install pandas 安装完成后,可以使用以下代码读取csv文件: import pandas as pd df = pd.read_csv(‘data.csv’) print(df.head()) # 打印前五行数据 这里data.csv是csv文件的文件名,pd.read_csv函…

    python 2023年5月14日
    00
  • Pandas修改DataFrame列名的两种方法实例

    下面是” Pandas修改DataFrame列名的两种方法实例”的完整攻略。 1. 查看DataFrame的列名 在修改DataFrame的列名之前,首先需要通过以下代码查看DataFrame的列名: import pandas as pd # 创建DataFrame df = pd.DataFrame({‘A’: [1, 2], ‘B’: [3, 4]})…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部