如何在Pandas数据框架中计算MOVING AVERAGE

计算MOVING AVERAGE(移动平均)是Pandas使用频率非常高的一个操作,可以用来平滑数据、去除噪声等。下面是在Pandas数据框架中计算MOVING AVERAGE的完整攻略。

  1. 加载数据:首先需要导入Pandas库,并使用Pandas的read_csv函数加载数据。
import pandas as pd

data = pd.read_csv("data.csv")
  1. 创建移动平均列:在Pandas数据框架中计算移动平均,需要先创建一个新的列来存储结果。可以使用Pandas的Series对象的rolling函数计算移动平均,并将结果赋值给一个新的列,例如“Moving Average”。
data['Moving Average'] = data['Close'].rolling(window=10).mean()

其中,“window”参数指定移动平均窗口大小。这里设置为10,即每个数据点的移动平均是它本身和前9个数据点的平均值。

  1. 可视化移动平均:可以使用Matplotlib库将数据和移动平均绘制成折线图,以便更好地展示数据的变化趋势。
import matplotlib.pyplot as plt

plt.plot(data['Date'], data['Close'])
plt.plot(data['Date'], data['Moving Average'])
plt.legend(['Close', 'Moving Average'])
plt.show()
  1. 完整代码示例:
import pandas as pd
import matplotlib.pyplot as plt

data = pd.read_csv("data.csv")
data['Moving Average'] = data['Close'].rolling(window=10).mean()
plt.plot(data['Date'], data['Close'])
plt.plot(data['Date'], data['Moving Average'])
plt.legend(['Close', 'Moving Average'])
plt.show()

以上就是在Pandas数据框架中计算MOVING AVERAGE的完整攻略,示例代码中使用的数据文件是一个带有日期和收盘价的CSV文件,可以根据实际情况更改数据来源和计算方法。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:如何在Pandas数据框架中计算MOVING AVERAGE - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • 在Pandas系列中把多索引串联成单一索引

    要将多层级(多索引)的数据转换为单层级索引,可以使用Pandas中的reset_index()方法。这个方法将多层级的行列索引变化为最基础的单层级数据。下面是示例代码: import pandas as pd # 创建有多层级索引的数据 data = {‘color’: [‘blue’, ‘green’, ‘red’, ‘white’, ‘yellow’],…

    python-answer 2023年3月27日
    00
  • 如何通过日期和时间对Pandas DataFrame进行分组

    当我们在对Pandas DataFrame进行数据分析时,通常会使用分组来聚合数据,并生成汇总结果。在Pandas中,可以使用日期和时间作为分组依据,例如按照月份或者年份进行分组。以下是使用日期和时间对Pandas DataFrame进行分组的完整攻略: 示例数据集准备 首先,我们需要准备一个示例数据集,包含日期和时间列。这里我们使用Python的datet…

    python-answer 2023年3月27日
    00
  • python pandas dataframe 行列选择,切片操作方法

    下面是关于Python Pandas DataFrame 行列选择、切片操作方法的详细攻略: 1. DataFrame行列选择 1.1 按列选择 DataFrame 表示的是一张表格,而表格中的每一列都有自己的列名,我们可以通过列名来选择需要的列,所以按列选择的方法是最常用的,示例如下: import pandas as pd # 创建一个包含 4 列的 D…

    python 2023年5月14日
    00
  • Python Pandas使用str.rsplit()将字符串反向分割成两个List/Column

    首先,我们需要明白什么是字符串反向分割。字符串反向分割是将字符串从后往前逐个分割,并将分割后的结果以列表形式保存。 接下来,我们要使用Python的Pandas库中的str.rsplit()方法来实现字符串反向分割。str.rsplit()方法是将字符串从右至左分割,并以列表形式返回每个分割的部分。 下面是使用Python Pandas库中str.rspli…

    python-answer 2023年3月27日
    00
  • 分享一个Python 遇到数据库超好用的模块

    请允许我为大家详细讲解一下“分享一个Python 遇到数据库超好用的模块”的完整攻略。 1. 简介 在Python编程中,我们经常需要使用到数据库进行数据的读写操作,而不同的数据库需要用不同的模块来进行访问。在这种情况下,为了使用方便,我们可以选择使用一个能够同时支持多种数据库的模块,这样我们就可以在不同的项目中使用同一套代码进行数据库操作了。今天,我想向大…

    python 2023年6月13日
    00
  • Pytorch数据读取之Dataset和DataLoader知识总结

    当使用PyTorch进行深度学习时,我们需要将数据转化为张量并通过模型传递,但如何将原始数据转化为张量呢?这就涉及到PyTorch数据读取中的Dataset和DataLoader两个重要的概念。 Dataset PyTorch中的Dataset是一个抽象类,代表数据集,它可以定义自己的数据形式、读取数据的方式、增加额外的预处理步骤等。我们只需继承该类,并实现…

    python 2023年5月14日
    00
  • 使用Excel文件创建一个数据框架

    首先,需要明确数据框架的概念,它指的是一种二维的表格形式,其中每一行都是一个观测值,每一列都是一种变量。 在Excel文件中,可以通过以下步骤来创建一个数据框架: 第一步:打开Excel软件并建立一个新工作簿 在Excel中,新建一个工作簿的方法是打开软件后点击“文件”(File)->“新建”(New)。这将在屏幕上打开一个新的工作簿。 第二步:创建数…

    python-answer 2023年3月27日
    00
  • 用Pandas的read_html()来抓取维基百科的表格

    当需要从互联网上获取数据时,网页上的表格是一个很好的数据源。而Python中的Pandas库提供了一个方便的方法来获取HTML表格。这个方法是read_html(),它可以从web页面上的table标签中提取出数据。 使用read_html()来抓取维基百科的表格有以下步骤: 1.导入所需的库 import pandas as pd 2.创建一个URL变量,…

    python-answer 2023年3月27日
    00
合作推广
合作推广
分享本页
返回顶部