pytorch使用指定GPU训练的实例

在PyTorch中,我们可以使用指定的GPU来训练模型。在本文中,我们将详细讲解如何使用指定的GPU来训练模型。我们将使用两个示例来说明如何完成这些步骤。

示例1:使用单个GPU训练模型

以下是使用单个GPU训练模型的步骤:

import torch
import torch.nn as nn
import torch.optim as optim

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = Net().to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 加载数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

# 训练模型
for epoch in range(10):
    running_loss = 0.0
    for i, data in enumerate(train_loader, 0):
        inputs, labels = data
        inputs, labels = inputs.to(device), labels.to(device)
        optimizer.zero_grad()
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()

    print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_dataset)}')

在上述代码中,我们首先检查GPU是否可用,并将模型移动到GPU上。然后,我们定义了一个简单的全连接神经网络Net,它含有一个输入层、一个隐藏层和一个输出层。在训练模型的过程中,我们使用inputs.to(device)labels.to(device)将数据移动到GPU上。在训练模型的过程中,我们使用torch.utils.data.DataLoader加载数据,并使用enumerate()函数遍历数据。在每个批次中,我们使用optimizer.zero_grad()清除梯度,使用model(inputs)计算输出,使用criterion(outputs, labels)计算损失,使用loss.backward()计算梯度,使用optimizer.step()更新权重。

示例2:使用多个GPU训练模型

以下是使用多个GPU训练模型的步骤:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.parallel
import torch.distributed as dist
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed

# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(784, 128)
        self.fc2 = nn.Linear(128, 10)

    def forward(self, x):
        x = x.view(-1, 784)
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = Net().to(device)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss().to(device)
optimizer = optim.SGD(model.parameters(), lr=0.1)

# 加载数据
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True, num_workers=4, pin_memory=True)

# 训练模型
def train(gpu, train_loader):
    rank = gpu
    dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:23456', world_size=2, rank=rank)
    torch.cuda.set_device(gpu)
    model = Net().to(device)
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
    criterion = nn.CrossEntropyLoss().to(device)
    optimizer = optim.SGD(model.parameters(), lr=0.1)

    for epoch in range(10):
        running_loss = 0.0
        for i, data in enumerate(train_loader, 0):
            inputs, labels = data
            inputs, labels = inputs.to(device), labels.to(device)
            optimizer.zero_grad()
            outputs = model(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()
            running_loss += loss.item()

        print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_dataset)}')

# 启动多个进程
if __name__ == '__main__':
    mp.spawn(train, nprocs=2, args=(train_loader,))

在上述代码中,我们首先检查GPU是否可用,并将模型移动到GPU上。然后,我们定义了一个简单的全连接神经网络Net,它含有一个输入层、一个隐藏层和一个输出层。在训练模型的过程中,我们使用inputs.to(device)labels.to(device)将数据移动到GPU上。在训练模型的过程中,我们使用torch.utils.data.DataLoader加载数据,并使用enumerate()函数遍历数据。在每个批次中,我们使用optimizer.zero_grad()清除梯度,使用model(inputs)计算输出,使用criterion(outputs, labels)计算损失,使用loss.backward()计算梯度,使用optimizer.step()更新权重。在使用多个GPU训练模型时,我们使用torch.nn.parallel.DistributedDataParallel函数将模型并行化,并使用mp.spawn()函数启动多个进程。

结论

在本文中,我们详细讲解了如何使用指定的GPU来训练模型。我们使用了两个示例来说明如何完成这些步骤。如果您按照这些步骤操作,您应该能够成功使用指定的GPU来训练模型。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch使用指定GPU训练的实例 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • 7月3日云栖精选夜读:强大的PyTorch:10分钟让你了解深度学习领域新流行的框架

    摘要: 今年一月份开源的PyTorch,因为它强大的功能,它现在已经成为深度学习领域新流行框架,它的强大源于它内部有很多内置的库。本文就着重介绍了其中几种有特色的库,它们能够帮你在深度学习领域更上一层楼。 热点热议 惊心动魄!程序员们说这些时刻再也不想经历了 作者:程序猿和媛 Java 的最 今年一月份开源的PyTorch,因为它强大的功能,它现在已经成为深…

    2023年4月8日
    00
  • 解说pytorch中的model=model.to(device)

    这篇文章主要介绍了pytorch中的model=model.to(device)使用说明,具有很好的参考价值,希望对大家有所帮助。如有错误或未考虑完全的地方,望不吝赐教 这代表将模型加载到指定设备上。 其中,device=torch.device(“cpu”)代表的使用cpu,而device=torch.device(“cuda”)则代表的使用GPU。 当我…

    PyTorch 2023年4月8日
    00
  • pytorch 7 optimizer 优化器 加速训练

    import torch import torch.utils.data as Data import torch.nn.functional as F import matplotlib.pyplot as plt # torch.manual_seed(1) # reproducible 超参数设置 LR = 0.01 BATCH_SIZE = 32 E…

    2023年4月8日
    00
  • 关于pytorch中全连接神经网络搭建两种模式详解

    PyTorch 中全连接神经网络搭建两种模式详解 在 PyTorch 中,全连接神经网络是一种常见的神经网络模型。本文将详细讲解 PyTorch 中全连接神经网络的搭建方法,并提供两个示例说明。 1. 模式一:使用 nn.Module 搭建全连接神经网络 在 PyTorch 中,我们可以使用 nn.Module 类来搭建全连接神经网络。以下是使用 nn.Mo…

    PyTorch 2023年5月16日
    00
  • python使用torch随机初始化参数

    在深度学习中,随机初始化参数是非常重要的。本文提供一个完整的攻略,以帮助您了解如何在Python中使用PyTorch随机初始化参数。 方法1:使用torch.nn.init 在PyTorch中,您可以使用torch.nn.init模块来随机初始化参数。torch.nn.init模块提供了多种初始化方法,包括常见的Xavier初始化和Kaiming初始化。您可…

    PyTorch 2023年5月15日
    00
  • pytorch中model.modules()和model.children()的区别

    model.modules()和model.children()均为迭代器,model.modules()会遍历model中所有的子层,而model.children()仅会遍历当前层。 # model.modules()类似于 [[1, 2], 3],其遍历结果为: [[1, 2], 3], [1, 2], 1, 2, 3 # model.children…

    PyTorch 2023年4月8日
    00
  • pytorch tensor计算三通道均值方式

    以下是PyTorch计算三通道均值的两个示例说明。 示例1:计算图像三通道均值 在这个示例中,我们将使用PyTorch计算图像三通道均值。 首先,我们需要准备数据。我们将使用torchvision库来加载图像数据集。您可以使用以下代码来加载数据集: import torchvision.datasets as datasets import torchvis…

    PyTorch 2023年5月15日
    00
  • PyTorch中Tensor和tensor的区别是什么

    这篇文章主要介绍“PyTorch中Tensor和tensor的区别是什么”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“PyTorch中Tensor和tensor的区别是什么”文章能帮助大家解决问题。 Tensor和tensor的区别 本文列举的框架源码基于PyTorch2.0,交互语句在0.4.1上测试通过 impo…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部