这一系列基本上是属于我自己进行到了那个步骤就做到那个步骤的

由于新装了GPU (GTX750ti)和CUDA9.0、CUDNN7.1版本的软件,所以希望TensorFlow能在GPU上运行,也算上补上之前的承诺

说了下初衷,由于现在新的CUDA版本对TensorFlow的支持不好,只能采取编译源码的方式进行

所以大概分为以下几个步骤

1.安装依赖库(这部分我已经做过了,不进行介绍,可以看前边的依赖库,基本一致)

sudo apt-get install openjdk-8-jdk

jdk是bazel必须的

2.安装Git(有的就跳过这一步)

3.安装TensorFlow的build工具bazel

4.配置并编译TensorFlow源码

5.安装并配置环境变量

1.安装依赖库

2.安装Git

使用

sudo apt-get install git
git clone --recursive https://github.com/tensorflow/tensorflow

3. 安装TensorFlow的build工具bazel

这一步比较麻烦,是因为apt-get中没有bazel这个工具

因此需要到GitHub上先下载,再进行安装 下载地址是https://github.com/bazelbuild/bazel/releases

选择正确版本下载,这里序号看下TensorFlow的版本需求,具体对BAZEL的需求可以查看configure.py文件,比如我这个版本中就有这样的一段

_TF_BAZELRC_FILENAME = '.tf_configure.bazelrc'
_TF_WORKSPACE_ROOT = ''
_TF_BAZELRC = ''
_TF_CURRENT_BAZEL_VERSION = None
_TF_MIN_BAZEL_VERSION = '0.27.1'
_TF_MAX_BAZEL_VERSION = '1.1.0'

每个字段的意思从字面上就可以得知,_TF_BAZELRC_FILENAME是使用bazel编译时使用的配置文件(没有特别细致的研究,https://www.cnblogs.com/shouhuxianjian/p/9416934.html里边有解释),_TF_MIN_BAZEL_VERSION = '0.27.1'是最低的bazel版本需求

使用sudo命令安装.sh文件即可

sudo chmod +x ./bazel*.sh
sudo ./bazel-0.*.sh

4.配置并编译TensorFlow源码

首先是配置,可以针对自己的需求进行选择和裁剪。这一步特别麻烦,有很多选项需要选择,我的选择如下:

 1 jourluohua@jour:~/tools/tensorflow$ ./configure 
 2 WARNING: Running Bazel server needs to be killed, because the startup options are different.
 3 You have bazel 0.14.1 installed.
 4 Please specify the location of python. [Default is /usr/bin/python]: 
 5 
 6 
 7 Found possible Python library paths:
 8   /usr/local/lib/python2.7/dist-packages
 9   /usr/lib/python2.7/dist-packages
10 Please input the desired Python library path to use.  Default is [/usr/local/lib/python2.7/dist-packages]
11 
12 Do you wish to build TensorFlow with jemalloc as malloc support? [Y/n]: Y
13 jemalloc as malloc support will be enabled for TensorFlow.
14 
15 Do you wish to build TensorFlow with Google Cloud Platform support? [Y/n]: n
16 No Google Cloud Platform support will be enabled for TensorFlow.
17 
18 Do you wish to build TensorFlow with Hadoop File System support? [Y/n]: n
19 No Hadoop File System support will be enabled for TensorFlow.
20 
21 Do you wish to build TensorFlow with Amazon S3 File System support? [Y/n]: n
22 No Amazon S3 File System support will be enabled for TensorFlow.
23 
24 Do you wish to build TensorFlow with Apache Kafka Platform support? [Y/n]: n
25 No Apache Kafka Platform support will be enabled for TensorFlow.
26 
27 Do you wish to build TensorFlow with XLA JIT support? [y/N]: y
28 XLA JIT support will be enabled for TensorFlow.
29 
30 Do you wish to build TensorFlow with GDR support? [y/N]: y
31 GDR support will be enabled for TensorFlow.
32 
33 Do you wish to build TensorFlow with VERBS support? [y/N]: y
34 VERBS support will be enabled for TensorFlow.
35 
36 Do you wish to build TensorFlow with OpenCL SYCL support? [y/N]: N
37 No OpenCL SYCL support will be enabled for TensorFlow.
38 
39 Do you wish to build TensorFlow with CUDA support? [y/N]: y
40 CUDA support will be enabled for TensorFlow.
41 
42 Please specify the CUDA SDK version you want to use. [Leave empty to default to CUDA 9.0]: 8
43 
44 
45 Please specify the location where CUDA 8.0 toolkit is installed. Refer to README.md for more details. [Default is /usr/local/cuda]: 
46 
47 
48 Please specify the cuDNN version you want to use. [Leave empty to default to cuDNN 7.0]: 
49 
50 
51 Please specify the location where cuDNN 7 library is installed. Refer to README.md for more details. [Default is /usr/local/cuda]:
52 
53 
54 Do you wish to build TensorFlow with TensorRT support? [y/N]: N
55 No TensorRT support will be enabled for TensorFlow.
56 
57 Please specify the NCCL version you want to use. [Leave empty to default to NCCL 1.3]: 
58 
59 
60 Please specify a list of comma-separated Cuda compute capabilities you want to build with.
61 You can find the compute capability of your device at: https://developer.nvidia.com/cuda-gpus.
62 Please note that each additional compute capability significantly increases your build time and binary size. [Default is: 5.0]
63 
64 
65 Do you want to use clang as CUDA compiler? [y/N]: N
66 nvcc will be used as CUDA compiler.
67 
68 Please specify which gcc should be used by nvcc as the host compiler. [Default is /usr/bin/gcc]: 
69 
70 
71 Do you wish to build TensorFlow with MPI support? [y/N]: N
72 No MPI support will be enabled for TensorFlow.
73 
74 Please specify optimization flags to use during compilation when bazel option "--config=opt" is specified [Default is -march=native]: 
75 
76 
77 Would you like to interactively configure ./WORKSPACE for Android builds? [y/N]: N
78 Not configuring the WORKSPACE for Android builds.
79 
80 Preconfigured Bazel build configs. You can use any of the below by adding "--config=<>" to your build command. See tools/bazel.rc for more details.
81     --config=mkl             # Build with MKL support.
82     --config=monolithic      # Config for mostly static monolithic build.
83 Configuration finished

View Code