检查Pandas数据框架中的NaN

Pandas 中,NaN 是指 Not a Number,代表缺失值或无效值。检查 Pandas 数据框架中的 NaN 是数据预处理中重要的一步。下面介绍如何进行完整的 NaN 检查:

1. 查看数据框架中的缺失值

可以使用 isnull()isna() 函数查看数据框架中缺失值的情况。这两个函数的作用相同,都返回一个布尔型数组,表示数据框架中缺失值的位置。

import pandas as pd
import numpy as np

df = pd.DataFrame({'A': [1, 2, np.nan], 'B': [4, np.nan, np.nan], 'C': [7, 8, 9]})
print(df.isnull())
print(df.isna())

输出结果:

       A      B      C
0  False  False  False
1  False   True  False
2   True   True  False

       A      B      C
0  False  False  False
1  False   True  False
2   True   True  False

从上面的结果可以看出,df.isnull()df.isna() 返回了一个与原始数据框架维度相同的数据框架,其中缺失值的位置为 True,非缺失值的位置为 False

2. 统计数据框架中缺失值的数量

可以使用 isnull().sum()isna().sum() 函数统计缺失值的数量。这两个函数的作用相同,均返回每列中缺失值的数量。

print(df.isnull().sum())
print(df.isna().sum())

输出结果:

A    1
B    2
C    0
dtype: int64

A    1
B    2
C    0
dtype: int64

从上面的结果可以看出,在 df 中,A 列有 1 个缺失值,B 列有 2 个缺失值,C 列没有缺失值。

3. 统计数据框架中非缺失值的数量

可以使用 count() 函数统计数据框架中非缺失值的数量。

print(df.count())

输出结果:

A    2
B    1
C    3
dtype: int64

从上面的结果可以看出,在 df 中,A 列有 2 个非缺失值,B 列有 1 个非缺失值,C 列有 3 个非缺失值。

4. 删除数据框架中的缺失值

可以使用 dropna() 函数删除数据框架中的缺失值。该函数返回一个新的数据框架,其中缺失值所在的行或列被删除。

print(df.dropna()) # 删除含缺失值的行
print(df.dropna(axis=1)) # 删除含缺失值的列

输出结果:

     A    B  C
0  1.0  4.0  7

   C
0  7
1  8
2  9

从上面的结果可以看出,df.dropna() 删除了第二行,包含缺失值的列被全部删除;df.dropna(axis=1) 删除了 B 列和 C 列,因为它们都含有缺失值。

以上就是关于检查 Pandas 数据框架中的 NaN 的完整攻略和实例说明。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:检查Pandas数据框架中的NaN - Python技术站

(0)
上一篇 2023年3月27日
下一篇 2023年3月27日

相关文章

  • mybatis group by substr函数传参报错的解决

    当使用MyBatis进行SQL查询时,如果在查询语句中使用了group by和substr函数,有时可能会遇到传参报错的问题。本文将详细讲解这一问题的解决方法。 问题现象 在MyBatis的select语句中使用了group by和substr函数,例如: select substring(name, 1, 3) as short_name, count(*…

    python 2023年5月14日
    00
  • 在Pandas DataFrame中应用if条件的方法

    当我们需要根据某种条件在Pandas DataFrame中对数据进行筛选或修改时,可以使用if条件来实现。 以下是在Pandas DataFrame中使用if条件的方法及示例: 方法一:使用DataFrame的apply函数 我们可以使用apply函数,将自定义的lambda函数应用到每个元素上,然后返回一个新的DataFrame。在该lambda函数中,我…

    python-answer 2023年3月27日
    00
  • Python中Pandas.copy()与通过变量复制的区别

    Pandas是Python中非常流行的数据处理和分析库,其中copy()方法是复制数据框的一个常见方法。本篇攻略将从以下几个方面详细讲解copy()方法及其与通过变量复制的区别: copy()方法的基本用法 shallow copy和deep copy的区别 通过变量复制的特点及与copy()方法的区别 实例演示 1. copy()方法的基本用法 copy(…

    python-answer 2023年3月27日
    00
  • python3 pandas 读取MySQL数据和插入的实例

    好的。下面我会详细介绍如何使用Python3 Pandas读取MySQL数据和插入MySQL的方法和示例。 安装pandas和pymysql库 首先需要在Python3环境中安装pandas和pymysql库。可以使用pip命令安装,命令如下: pip install pandas pip install pymysql 读取MySQL数据 使用Python…

    python 2023年6月13日
    00
  • Python遍历pandas数据方法总结

    当使用Python进行数据分析时,Pandas是一个非常有用的工具。在处理Pandas数据时,我们需要使用遍历技术来操作这些数据,以及将它们转换成另一种形式,比如图表、统计数据等。本文将详细讲解Python中遍历Pandas数据的各种方法。 遍历Pandas数据 方法一:使用for循环 使用for循环是Python中常见的遍历数据方法,而且在遍历Pandas…

    python 2023年5月14日
    00
  • 聊聊python dropna()和notnull()的用法区别

    聊聊Python dropna()和notnull()的用法区别 引言 在使用Pandas进行数据处理和分析时,我们常常需要过滤掉数据中带有缺失值的行或列。在Pandas中,我们通常会使用 dropna() 和 notnull() 这两个方法来实现这个目的。本篇文章将会讲解这两个方法的用法,并且对它们的区别做出详细的解析。 dropna()方法 什么是dro…

    python 2023年6月13日
    00
  • 用Pandas计算每组的唯一值

    首先,使用Pandas计算每组的唯一值,可以通过Pandas的groupby()方法来实现。这个方法可以按照多个列或者一个列进行分组,并对每个组进行计算。下面是关于如何使用groupby()方法获取每组唯一值的攻略: 步骤一:导入所需库 这个问题中需要使用Pandas库,因此需要先导入Pandas库。可以使用以下代码进行导入: import pandas a…

    python-answer 2023年3月27日
    00
  • Python坐标轴操作及设置代码实例

    您想了解 Python 坐标轴操作及设置的完整攻略,下面我来为您详细讲解。 Python 坐标轴操作及设置 Python 中常用的绘图库有 Matplotlib,Seaborn 等。在绘图时,经常需要对坐标轴进行操作及设置,以达到更好的可视化效果。 1. 坐标轴的设置 在 Matplotlib 中,可以通过 plt.gca() 方法获取当前绘图的坐标轴对象,…

    python 2023年6月13日
    00
合作推广
合作推广
分享本页
返回顶部