人工智能
-
Keras入门之windows环境下带图形界面的Anaconda3的安装(包括通过清华源镜像下载并替换清华源镜像)
Keras入门之Anaconda的安装 最近学习了Keras简单入门,发现Anaconda是一个较为好用全面的Keras开发环境,特写此文章介绍安装时遇到的坑。 下载 由于某些特殊原因,境内无法直接下载Anaconda3,如果你直接百度Anacoda3官网下载,那么就是漫长的等待,大约600M的程序需要下载24小时以上。所以建议去清华源下载,…
-
好书快翻–《Python深度学习第二版》第三章 Keras和TensorFlow简介
博主有话说:首先感谢您阅读这篇博客!博主做大数据技术,平时喜欢阅读英文原版大数据技术书籍,并翻译成中文,分享出来。如要及时看到翻译的章节,请关注博主微信公众号 登峰大数据,微信号 bigdata_work 本章包括: 详解TensorFlow、Keras和它们之间的关系 建立一个深度学习的工作空间 核心深度学习概念如何转化为Keras和TensorFlo…
-
Keras自定义Layer使用说明
自定义 Layer 自定义激活函数 函数形式比较简单的时候可以用lambda函数: clipped_relu = lambda x: K.activations.relu(x, max_value=4000) Layer类 class MLPBlock(Layer): def __init__(self): super(MLPBlock, self).__i…
-
大数据学习——TensorFlow学习笔记1—keras、梯度下降算法、多层感知器
一、tensorflow的特点与概述《TENSORFLOW ROADMAP》 1、What’s the point of this open source project? The point of this repository is that the resources are being targeted. The organization of th…
-
Pytorch_第二篇_Pytorch tensors 张量基础用法和常用操作
Introduce Pytorch的Tensors可以理解成Numpy中的数组ndarrays(0维张量为标量,一维张量为向量,二维向量为矩阵,三维以上张量统称为多维张量),但是Tensors 支持GPU并行计算,这是其最大的一个优点。 本文首先介绍tensor的基础用法,主要tensor的创建方式以及tensor的常用操作。 以下均为初学者笔记。 tens…
-
Pytorch_第三篇_Pytorch Autograd (自动求导机制)
Introduce Pytorch Autograd库 (自动求导机制) 是训练神经网络时,反向误差传播(BP)算法的核心。 本文通过logistic回归模型来介绍Pytorch的自动求导机制。首先,本文介绍了tensor与求导相关的属性。其次,通过logistic回归模型来帮助理解BP算法中的前向传播以及反向传播中的导数计算。 以下均为初学者笔记。 Ten…
-
Pytorch-时间序列预测
1.问题描述 已知[k,k+n)时刻的正弦函数,预测[k+t,k+n+t)时刻的正弦曲线。因为每个时刻曲线上的点是一个值,即feature_len=1,如果给出50个时刻的点,即seq_len=50,如果只提供一条曲线供输入,即batch=1。输入的shape=[seq_len, batch, feature_len] = [50, 1, 1]。 2.代码实…
-
Pytorch学习笔记12—- Pytorch的LSTM的理解及入门小案例
1.LSTM模型参数说明 class torch.nn.LSTM(*args, **kwargs) 参数列表 input_size:x的特征维度 hidden_size:隐藏层的特征维度 num_layers:lstm隐层的层数,默认为1 bias:False则bih=0和bhh=0. 默认为True batch_first:True则输入输出的数据格式为 …
-
PyTorch入门学习(二):Autogard之自动求梯度
autograd包是PyTorch中神经网络的核心部分,简单学习一下. autograd提供了所有张量操作的自动求微分功能. 它的灵活性体现在可以通过代码的运行来决定反向传播的过程, 这样就使得每一次的迭代都可以是不一样的. autograd.Variable是这个包中的核心类. 它封装了Tensor,并且支持了几乎所有Tensor的操作. 一旦你完成张量计…
-
pytorch官网上两个例程
caffe用起来太笨重了,最近转到pytorch,用起来实在不要太方便,上手也非常快,这里贴一下pytorch官网上的两个小例程,掌握一下它的用法: 例程一:利用nn 这个module构建网络,实现一个图像分类的小功能; 链接:http://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.ht…