Keras
-
(重磅)Internal: Failed to call ThenRnnForward with model config问题的解决(Keras 2.4.3和Tensorflow2.0系列)
与此问题斗争了整整十天。win10,keras2.4.3,CUDA 10.1,CUDNN 7.6, tensorflow 2.3.0,驱动程序nvida 452 该问题出现在BiLSTM(GPU加速)的快速运算过程中,但凡在BiLSTM的后端添加任何层,处理百万数据时,往往训练几个epoch,甚至是几十个batch就会崩溃。 期间试过了无数的方法。包括、 1…
-
keras-bert,加载预训练模型报错 Layer model_1 expects 3 inputs, but it received 2 input tensors
问题:在使用keras-bert 导入预训练的模型时, 报错Layer model_1 expects 3 inputs, but it received 2 input tensors 导入代码: bert_model = load_trained_model_from_checkpoint(config_path, checkpoint_path, tr…
-
keras中的mask操作
使用背景 最常见的一种情况, 在NLP问题的句子补全方法中, 按照一定的长度, 对句子进行填补和截取操作. 一般使用keras.preprocessing.sequence包中的pad_sequences方法, 在句子前面或者后面补0. 但是这些零是我们不需要的, 只是为了组成可以计算的结构才填补的. 因此计算过程中, 我们希望用mask的思想, 在计算中,…
-
pytorch与torchvision版本、tensorflow与keras版本
pytorch==1.1.0 torchvision==0.3.0 pytorch==1.0.0 torchvision==0.2.1来源:https://pytorch.org/get-started/previous-versions/tensorflow2.1 keras2.3.1 python3.6来源:https://docs.floydhub.c…
-
深度学习-keras/openCV环境安装配置学习笔记
Keras最简单的安装方式就是:anaconda + pycharm + TensorFlow+(GPU或者CPU) TensorFlow 有两个版本:CPU 版本和 GPU 版本。GPU 版本需要 CUDA 和 cuDNN 的支持,CPU 版本不需要。如果你要安装 GPU 版本,请先确认你的显卡支持 CUDA。采用 pip 安装方式1.确认版本:pip版本…
-
Deep Learning 32: 自己写的keras的一个callbacks函数,解决keras中不能在每个epoch实时显示学习速率learning rate的问题
一.问题: keras中不能在每个epoch实时显示学习速率learning rate,从而方便调试,实际上也是为了调试解决这个问题:Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结 二.解决方法 1.把下面代码加入keras文件callbacks.py中: 1 class DisplayLearningRate…
-
Deep Learning 31: 不同版本的keras,对同样的代码,得到不同结果的原因总结
一.疑问 这几天一直纠结于一个问题: 同样的代码,为什么在keras的0.3.3版本中,拟合得比较好,也没有过拟合,验证集准确率一直高于训练准确率. 但是在换到keras的1.2.0版本中的时候,就过拟合了,验证误差一直高于训练误差 二.答案 今天终于发现原因了,原来是这两个版本的keras的optimezer实现不一样,但是它们的默认参数是一样的,因为我代…
-
keras_yolo3阅读
源码地址 https://github.com/qqwweee/keras-yolo3 春节期间仔细看了看yolov3的kears源码,这个源码毕竟不是作者写的,有点寒酸,可能大道至简也是这么个理。我在看源码的时候,参照了一些博客进行补充,主要是,作者公布的代码有点凌乱和我熟悉的代码风格不同的缘故吧。。。。。 看到大神的优秀博客,感觉自己的笔记有点炒冷饭的味…
-
Keras框架下用.flow_from_directoryt自己构建数据集
0 前言 在现实的实战过程中,遇到的数据集往往不是类似于mnist一样已经打包好的数据集,而是以图片形式存在文件夹中,对于这种情况是没有相关函数(如load_data()函数)直接加载的,因此,下面我将提出两种构建数据集的方法。 方法1 .flow_from_directory(),这个函数在数据增强的时候可以用到,相关用法为: train_datagen …
-
keras的图像预处理ImageDataGenerator类
keras的图像预处理ImageDataGenerator类 一、总结 一句话总结: 【图片生成器-“喂”一个batch_size大小的样本数据】:ImageDataGenerator()是keras.preprocessing.image模块中的图片生成器,可以每一次给模型“喂”一个batch_size大小的样本数据 【数据增强等操作】:同时也可以在每一个…