深度学习
-
Deep Learning 19_深度学习UFLDL教程:Convolutional Neural Network_Exercise(斯坦福大学深度学习教程)
理论知识:Optimization: Stochastic Gradient Descent和Convolutional Neural Network CNN卷积神经网络推导和实现、Deep learning:五十一(CNN的反向求导及练习) Deep Learning 学习随记(八)CNN(Convolutional neural network)理解 …
-
Deep Learning 4_深度学习UFLDL教程:PCA in 2D_Exercise(斯坦福大学深度学习教程)
本节练习的主要内容:PCA,PCA Whitening以及ZCA Whitening在2D数据上的使用,2D的数据集是45个数据点,每个数据点是2维的。要注意区别比较二维数据与二维图像的不同,特别是在代码中,可以看出主要二维数据的在PCA前的预处理不需要先0均值归一化,而二维自然图像需要先0均值归一化。本节是在学习UFLDL第二节和结合上节的博文:…
-
Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)
1.理论知识:UFLDL教程、Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercise: Implement deep networks for digit classification。利用深度网络完成MNIST手写数字数据库中手写数字的识别。即:…
-
Deep Learning 12_深度学习UFLDL教程:Sparse Coding_exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程、Deep learning:二十九(Sparse coding练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 本节实验比较不好理解也不好做,我看很多人最后也没得出好的结果,所以得花时间仔细理解才行。 实验内容:Exercise:Sparse Coding。从10张512*512的已经白化后的灰度…
-
Deep Learning 1_深度学习UFLDL教程:Sparse Autoencoder练习(斯坦福大学深度学习教程)
本人写技术博客的目的,其实是感觉好多东西,很长一段时间不动就会忘记了,为了加深学习记忆以及方便以后可能忘记后能很快回忆起自己曾经学过的东西。 首先,在网上找了一些资料,看见介绍说UFLDL很不错,很适合从基础开始学习,Adrew Ng大牛写得一点都不装B,感觉非常好,另外对我们英语不好的人来说非常感谢,此教程的那些翻译者们!如余凯等。因为…
-
Deep Learning 9_深度学习UFLDL教程:linear decoder_exercise(斯坦福大学深度学习教程)
前言 实验内容:Exercise:Learning color features with Sparse Autoencoders。即:利用线性解码器,从100000张8*8的RGB图像块中提取颜色特征,这些特征会被用于下一节的练习 理论知识:线性解码器和http://www.cnblogs.com/tornadomeet/archive/2013/04/0…
-
Deep Learning 3_深度学习UFLDL教程:预处理之主成分分析与白化_总结(斯坦福大学深度学习教程)
1PCA ①PCA的作用:一是降维;二是可用于数据可视化; 注意:降维的原因是因为原始数据太大,希望提高训练速度但又不希望产生很大的误差。 ② PCA的使用场合:一是希望提高训练速度;二是内存太小;三是希望数据可视化。 ③用PCA前的预处理:(1)规整化特征的均值大致为0;(2)规整化不同特征的方差值彼此相似。 对于自然图片,…
-
Deep Learning 13_深度学习UFLDL教程:Independent Component Analysis_Exercise(斯坦福大学深度学习教程)
前言 理论知识:UFLDL教程、Deep learning:三十九(ICA模型练习) 实验环境:win7, matlab2015b,16G内存,2T机械硬盘 难点:本实验难点在于运行时间比较长,跑一次都快一天了,并且我还要验证各种代价函数的对错,所以跑了很多次。 实验内容:Exercise:Independent Component Analysis。从数据…
-
Deep Learning 5_深度学习UFLDL教程:PCA and Whitening_Exercise(斯坦福大学深度学习教程)
本文是基于Exercise:PCA and Whitening的练习。 理论知识见:UFLDL教程。 实验内容:从10张512*512自然图像中随机选取10000个12*12的图像块(patch),然后对这些patch进行99%的方差保留的PCA计算,最后对这些patch做PCA Whitening和ZCA Whitening,…
-
Deep Learning 6_深度学习UFLDL教程:Softmax Regression_Exercise(斯坦福大学深度学习教程)
练习内容:Exercise:Softmax Regression。完成MNIST手写数字数据库中手写数字的识别,即:用6万个已标注数据(即:6万张28*28的图像块(patches)),作训练数据集,然后利用其训练softmax分类器,再用1万个已标注数据(即:1万张28*28的图像块(patches))作为测试数据集,用前面训练好的softmax…