转自:https://blog.csdn.net/baidu_31437863/article/details/84474847

深度学习(Deep Learning)因其计算复杂度或参数冗余,在一些场景和设备上限制了相应的模型部署,需要借助模型压缩、优化加速、异构计算等方法突破瓶颈。

  • 模型压缩算法能够有效降低参数冗余,从而减少存储占用、通信带宽和计算复杂度,有助于深度学习的应用部署,具体可划分为如下几种方法(后续重点介绍剪枝与量化):
  • 线性或非线性量化:1/2bits, int8 和 fp16等;
  • 结构或非结构剪枝:deep compression, channel pruning 和 network slimming等;
  • 其他:权重矩阵的低秩分解,知识蒸馏与网络结构简化(squeeze-net, mobile-net, shuffle-net)等;
  • 模型优化加速能够提升网络的计算效率,具体包括:
  • Op-level的快速算法:FFT Conv2d (7x7, 9x9), Winograd Conv2d (3x3, 5x5) 等;
  • Layer-level的快速算法:Sparse-block net [1] 等;
  • 优化工具与库:TensorRT (Nvidia), Tensor Comprehension (Facebook) 和 Distiller (Intel) 等;
  • 异构计算方法借助协处理硬件引擎(通常是PCIE加速卡、ASIC加速芯片或加速器IP),完成深度学习模型在数据中心或边缘计算领域的实际部署,包括GPU、FPGA或DSA (Domain Specific Architecture) ASIC等。异构加速硬件可以选择定制方案,通常能效、性能会更高,目前市面上流行的AI芯片或加速器可参考 [2]。针对数据中心部署应用,通常选择通用方案,会有较完善的生态支持,例如NVIDIA GPU的CUDA生态,或者Xilinx即将推出的xDNN生态:

2. 网络剪枝

深度学习模型因其稀疏性,可以被裁剪为结构精简的网络模型,具体包括结构性剪枝与非结构性剪枝:、

  • 非结构剪枝:通常是连接级、细粒度的剪枝方法,精度相对较高,但依赖于特定算法库或硬件平台的支持,如Deep Compression [5], Sparse-Winograd [6] 算法等;
  • 结构剪枝:是filter级或layer级、粗粒度的剪枝方法,精度相对较低,但剪枝策略更为有效,不需要特定算法库或硬件平台的支持,能够直接在成熟深度学习框架上运行。如局部方式的、通过layer by layer方式的、最小化输出FM重建误差的Channel Pruning [7], ThiNet [8], Discrimination-aware Channel Pruning [9];全局方式的、通过训练期间对BN层Gamma系数施加L1正则约束的Network Slimming [10];全局方式的、按Taylor准则对Filter作重要性排序的Neuron Pruning [11];全局方式的、可动态重新更新pruned filters参数的剪枝方法 [12];
  •  

3. 模型量化

模型量化是指权重或激活输出可以被聚类到一些离散、低精度的数值点上,通常依赖于特定算法库或硬件平台的支持:

  • 二值化网络:XNORnet [13], ABCnet with Multiple Binary Bases [14], Bin-net with High-Order Residual Quantization [15], Bi-Real Net [16];
  • 三值化网络:Ternary weight networks [17], Trained Ternary Quantization [18];
  • W1-A8 或 W2-A8量化: Learning Symmetric Quantization [19];
  • INT8量化:TensorFlow-lite [20], TensorRT [21];
  • 其他(非线性):Intel INQ [22], log-net, CNNPack [23] 等;

参考文献:

其中知识蒸馏相关的讨论可参考:

https://blog.csdn.net/nature553863/article/details/80568658

Discrimination-aware Channel Pruning是一种结合鉴别力感知辅助Loss的分阶段Channel Selection剪枝策略,具体可参考:

https://blog.csdn.net/nature553863/article/details/83822895
 

References
[1]https://arxiv.org/abs/1801.02108,, Github: https://github.com/uber/sbnet

[3]  https://devblogs.nvidia.com/tensorrt-3-faster-tensorflow-inference/

[4] https://devblogs.nvidia.com/int8-inference-autonomous-vehicles-tensorrt/

[5] https://arxiv.org/abs/1510.00149

[6]  https://arxiv.org/abs/1802.06367,  https://ai.intel.com/winograd-2/, Github: https://github.com/xingyul/Sparse-Winograd-CNN

[7] https://arxiv.org/abs/1707.06168,  Github:https://github.com/yihui-he/channel-pruning

[8] https://arxiv.org/abs/1707.06342

[9] https://arxiv.org/abs/1810.11809, Github: https://github.com/Tencent/PocketFlow

[10] https://arxiv.org/abs/1708.06519,  Github: https://github.com/foolwood/pytorch-slimming

[11] https://arxiv.org/abs/1611.06440,  Github: https://github.com/jacobgil/pytorch-pruning

[12] http://xuanyidong.com/publication/ijcai-2018-sfp/

[13] https://arxiv.org/abs/1603.05279,  Github: https://github.com/ayush29feb/Sketch-A-XNORNet

                                                             Github: https://github.com/jiecaoyu/XNOR-Net-PyTorch

[14] https://arxiv.org/abs/1711.11294,  Github:  https://github.com/layog/Accurate-Binary-Convolution-Network

[15] https://arxiv.org/abs/1708.08687

[16] https://arxiv.org/abs/1808.00278, Github:https://github.com/liuzechun/Bi-Real-net

[17] https://arxiv.org/abs/1605.04711

[18] https://arxiv.org/abs/1612.01064,  Github: https://github.com/czhu95/ternarynet

[19] http://phwl.org/papers/syq_cvpr18.pdf,  Github: https://github.com/julianfaraone/SYQ

[20] https://arxiv.org/abs/1712.05877

[21] http://on-demand.gputechconf.com/gtc/2017/presentation/s7310-8-bit-inference-with-tensorrt.pdf

[22] https://arxiv.org/abs/1702.03044

[23] https://papers.nips.cc/paper/6390-cnnpack-packing-convolutional-neural-networks-in-the-frequency-domain
 

参考:https://blog.csdn.net/nature553863/article/details/81083955