作为网站作者,我可以为大家讲解一下使用C#的AForge类库识别验证码的完整攻略。
安装AForge类库
首先,我们需要在项目中安装AForge类库,可以通过NuGet进行安装。
打开Visual Studio,在项目面板上右键,点击“管理NuGet程序包”。在搜索框中输入“AForge”,找到“AForge.Imaging”和“AForge.Math”库并安装。
获取验证码图片
在进行验证码识别前,我们需要先获取验证码图片。
假设我们要进行的验证码识别的网站是“https://example.com”,我们可以使用C#的HttpWebRequest和HttpWebResponse类来获取验证码图片。以下是示例代码:
HttpWebRequest request = (HttpWebRequest)WebRequest.Create("https://example.com/captcha.png");
request.Method = "GET";
request.Accept = "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8";
request.Headers.Add("Accept-Encoding", "gzip, deflate, br");
request.Headers.Add("Upgrade-Insecure-Requests", "1");
request.UserAgent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.159 Safari/537.36 Edg/92.0.902.84";
request.Headers.Add("Sec-Fetch-Site", "none");
request.Headers.Add("Sec-Fetch-Mode", "navigate");
request.Headers.Add("Sec-Fetch-Dest", "document");
HttpWebResponse response = (HttpWebResponse)request.GetResponse();
Stream stream = response.GetResponseStream();
Bitmap image = new Bitmap(stream);
图像处理
获取了验证码图片之后,我们需要对图片进行处理,将其转换为可以进行识别的格式。以下是示例代码:
二值化处理
将颜色图像转换为二值图像,只有两种颜色:黑色和白色。
Grayscale grayFilter = new Grayscale(0.2125, 0.7154, 0.0721);
Bitmap grayImage = grayFilter.Apply(image);
Threshold thresholdFilter = new Threshold();
Bitmap thresholdImage = thresholdFilter.Apply(grayImage);
字符分割
对于验证码图片中的每个字符,我们需要将其单独识别,因此需要对图片进行字符分割。一般可以通过水平投影和垂直投影来实现。
List<int> blackPoints = new List<int>();
for (int x = 0; x < thresholdImage.Width; x++)
{
int count = 0;
for (int y = 0; y < thresholdImage.Height; y++)
{
if (thresholdImage.GetPixel(x, y).R == 0)
{
count++;
}
}
blackPoints.Add(count);
}
使用神经网络进行识别
对于每个字符,我们可以使用神经网络进行识别。以下是一个使用AForge类库的神经网络进行识别验证码的示例代码:
// 创建神经网络
ActivationNetwork network = new ActivationNetwork(new BipolarSigmoidFunction(2),
thresholdImage.Height * thresholdImage.Width, 20, 10);
// 训练神经网络
BackPropagationLearning teacher = new BackPropagationLearning(network);
double[][] input = new double[trainingSet.Count][];
double[][] output = new double[trainingSet.Count][];
for (int i = 0; i < trainingSet.Count; i++)
{
input[i] = new double[thresholdImage.Height * thresholdImage.Width];
output[i] = new double[10];
Bitmap charImage = trainingSet[i];
Bitmap charImageResized = new Bitmap(charImage, new Size(thresholdImage.Width, thresholdImage.Height));
Bitmap charImageThreshold = thresholdFilter.Apply(grayFilter.Apply(charImageResized));
for (int y = 0; y < charImageThreshold.Height; y++)
{
for (int x = 0; x < charImageThreshold.Width; x++)
{
input[i][y * charImageThreshold.Width + x] =
charImageThreshold.GetPixel(x, y).R == 0 ? -1 : 1;
}
}
output[i][(int)Char.GetNumericValue(charSet[i])] = 1;
}
teacher.RunEpoch(input, output);
// 对验证码进行识别
List<char> chars = new List<char>();
for (int i = 0; i < blackPoints.Count - 1; i++)
{
if (blackPoints[i] > 0 && blackPoints[i + 1] == 0)
{
int charX = i - blackPoints[i] / 2;
Bitmap charImage = new Bitmap(blackPoints[i], thresholdImage.Height);
Graphics graphics = Graphics.FromImage(charImage);
graphics.DrawImage(thresholdImage, new Rectangle(0, 0, blackPoints[i], thresholdImage.Height),
new Rectangle(charX, 0, blackPoints[i], thresholdImage.Height), GraphicsUnit.Pixel);
double[] inputVector = new double[thresholdImage.Height * thresholdImage.Width];
for (int y = 0; y < charImage.Height; y++)
{
for (int x = 0; x < charImage.Width; x++)
{
inputVector[y * charImage.Width + x] =
charImage.GetPixel(x, y).R == 0 ? -1 : 1;
}
}
double[] outputVector = network.Compute(inputVector);
chars.Add(charSet[outputVector.ToList().IndexOf(outputVector.Max())]);
}
}
结束语
以上就是使用C#的AForge类库识别验证码的完整攻略。希望对你有所帮助!
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用C#的aforge类库识别验证码实例 - Python技术站