2023年7大数据清理工具!

2023年7大数据清理工具!

首先,让我先告诉您什么是数据清理。

检测和解决错误、不正确或不相关数据的过程称为数据清理。这个数据处理的关键阶段,也称为数据清理或数据清理,可以提高公司数据的一致性、可靠性和实用性。遗漏数字、错位条目和印刷错误都是常见的数据缺陷。

我们周围的数据量每天都在增加,出错的机会也在增加。随着来自众多来源的大量数据,数据清理解决方案对于确保数据质量、流程效率和提高公司的竞争优势比以往任何时候都更加重要。

因此,我们依靠数据清理来提高数据管理系统的效率。通过最大限度地减少不一致、消除错误并帮助企业做出正确、明智的决策,数据清理可以提高我们数据的质量和实用性。质量差的数据会给您的公司带来一系列问题。

您可能会因信息重复而产生高额成本,因地址不正确而损失收入,并提供糟糕的客户体验。由于大多数企业都依赖于数据,尤其是金融、保险、零售、电信等数据密集型行业,因此无差错的数据管理变得至关重要。

当更改或删除不准确、不完整、结构不良或重复的数据时,有必要清理或清理数据库中的数据。

手动筛选数十亿条记录既费时又容易出错,因此使用规则、算法和查找表系统地检查数据错误的数据清理解决方案正变得越来越普遍,即使在分析驱动的组织中也是如此。

数据清理包括:

  1. 摆脱不良评论。
  2. 整合数据结构
  3. 删除不需要的异常值并标准化您的数据
  4. 跨集数据校正错误
  5. 处理缺失的数据
  6. 类型转换和语法修正错误
  7. 验证您的信息

手动清洗数据既费时又低效,更不用说容易出错了。这些问题可以由数据清理技术解决,它可以帮助您并保持出色的数据质量。

事实上,没有所谓的“正确的”数据清理工具。需要根据企业的目标、问题和数据库大小,对其数据清理软件提出不同的功能要求。

顶级数据清理工具

OpenRefine

这个复杂的工具,以前称为 Google Refine,可用于处理脏数据、清理数据和更改数据。PenFine 是一个开源数据实用程序。与我们列表中的其他工具相比,它的主要优势在于它是免费使用和配置的,因为它是开源的。

OpenRefine 使您能够在多种格式之间转换数据,同时确保其结构良好。它也可用于解析来自互联网的数据。它有更多的关系数据库的感觉。这对于需要比基本 Excel 文件提供更多信息的数据分析师非常有用。

另一个显着优势是您可以在您的机器上处理数据,从而保证数据的绝对安全。如果您希望链接或扩展您的数据集,您可以将 OpenRefine 连接到外部在线服务和其他云资源。虽然它执行一系列复杂的任务来使用它,但您只需要一些技术知识。

Trifacta Wrangler

一种交互式的数据清理和转换工具。它可以帮助数据分析师更快、更正确地清理和准备不良数据。它是由 Data Wrangler 的创建者创建的用于数据清理和转换的交互式工具。

此应用程序的最佳特性之一是格式化所需的时间更少,并且更专注于数据分析。它的机器学习技术通过推荐常见的转换和聚合来协助数据准备。例如,它的AI 算法可以快速识别和消除异常值,以及自动化整体数据质量监控——这是持续数据清理的有用工具。

无需从一开始就创建数据管道,该工具的用户界面可以以更加直观和直接的方式进行创建。这也是免费软件。

Winpure

是目前最流行、性价比最高的数据清洗方案之一,对海量数据进行简单的清洗、去重、整改、归一化。这是一种内部部署技术,任何规模的公司都可以使用。其功能包括数据清洗、数据匹配、重复数据删除、地址验证和电子邮件验证。

根据您的需要和列表大小,该程序有几种不同的风格。除非您将数据集传输到云端,否则您不必担心数据安全,因为它是在本地安装的。这是专为清理公司和客户数据而开发 的Winpure的关键功能。

从 CSV 文件到 SQL Server、Salesforce 和 Oracle,Winpure Clean & Match 可以处理和清理范围广泛的数据库和电子表格。高级数据净化和模糊匹配是它的一些主要特征,极快的数据清理也是如此。此外,它还支持四种语言:德语、英语、葡萄牙语和西班牙语,从而提供多语言支持。

TIBCO Clarity

此数据清理解决方案通过 Web 为按需软件服务提供基于云的软件即服务 ( SaaS )。它允许用户通过去重和清理地址来验证数据,从而更容易看到趋势并做出更好的判断。

它可以对来自各种来源的原始数据进行标准化,从而生成用于可靠分析的高质量数据。它是一个功能丰富的数据清理应用程序,可以使用来自各种来源的数据,包括 XLS 和 JSON 文件、压缩文件以及大量在线数据仓库和存储库。

它还具有一些可有可无的功能,例如撤消转换的能力。许多工具都无法使用此功能,但如果您对所做的修改不满意,它会很有用。所有这些功能的唯一缺点是没有可用的免费版本。

Melissa Clean Suite

这是一个进行全面数据分析然后验证、标准化、更正和附加客户联系记录的程序。它可以与您的 ERP 或 CRM 营销系统(例如 Microsoft Dynamics、Oracle、Salesforce)结合使用。

重复数据删除、联系人自动完成、数据验证、数据丰富、不断更新的联系人、实时和批处理以及数据附加是 Melissa Clean Suite 中提供的一些功能。

它还带有许多内置的营销工具,不需要任何复杂的培训(这是一个好处!)。人口生成、数据定位和细分是这些服务的示例。Melissa Clean Suite 的主要优势在于它可以在收集数据时对其进行清理。

Melissa 从一般数据管理的角度提供了明显的节省时间的好处,同时针对与营销相关的数据任务。使用此工具没有什么是您无法完成的,因为它具有如此多的功能。

Data Ladder

Data Ladder 是一种经济的清理和数据质量工具,而 DataMatch Enterprise 提供了市场上最佳的匹配精度和速度之一,并结合了先进的模糊匹配算法,可处理多达 1 亿条记录。

这些用户友好的解决方案使任何规模或行业的组织都可以轻松管理其数据清理操作。它专注于消费者数据。然而,与其他人不同的是,它旨在解决已经处于不良状态的数据集中的数据质量问题。它利用一个演练界面来指导您从头到尾完成数据处理。

您可以手动设计匹配定义,以响应不同级别的精确度,具体取决于您想要的结果。它还包括一个有用的计划功能,允许您提前安排数据清理活动。

Drake

这种基于文本的数据工作流使用和扩展起来很直观,数据处理阶段及其输入和输出一起描述,它可以自动处理依赖关系并确定要运行的命令和应该完成的顺序。

它是在考虑数据工作流管理的情况下创建的,它围绕数据及其依赖关系构建命令执行。它可用于各种数据处理任务,并具有许多输入和输出。

结论

以下是分析师日常使用的一些数据清理技术。我们建议您研究其中的一些工具和其他工具,以继续扩展您的数据清理工具箱。通过提高数据质量,投入更少的时间和资源来处理重复记录、维护过多的记录以及处理不正确的数据。

推荐阅读:《10大顶级数据挖掘软件!》

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:2023年7大数据清理工具! - Python技术站

(0)
上一篇 2023年2月7日 下午10:34
下一篇 2023年2月7日 下午10:58

相关文章

  • 如何处理大数据?

    处理大数据的完成攻略 大数据常常指的是数据量非常庞大、处理复杂度和速度非常高的数据集。针对大数据的处理,通常可以采取以下攻略: 分布式存储:将数据拆分存储在多个节点上,将数据存储和处理负载进行分散,提高数据访问和处理速度。例如,使用Apache Hadoop的HDFS分布式文件系统、Apache Cassandra或MongoDB的分布式数据库。 数据清洗和…

    大数据 2023年4月19日
    00
  • 大数据技术都有哪些?

    大数据技术是什么? 大数据技术指的是一种结合了数据挖掘、数据存储、数据共享和数据可视化的应用软件,这个应用软件包括数据、数据框架,以及用于调查和转换数据的工具和技术。 现如今,大数据技术已与机器学习、深度学习、人工智能和物联网等大规模增强的其他技术紧密联系在一起。 大数据技术种类 大数据技术可以分为两大类: 1.运营大数据技术: 它表示每天互联网生成的大量数…

    2022年11月14日
    00
  • 人工智能的应用范围有哪些?

    人工智能(Artificial Intelligence, AI)是一门研究如何制造智能机器的学科,已经在许多领域得到广泛应用。下面详细讲解人工智能的应用范围。 一、语音识别 语音识别是人工智能应用的一个重要领域之一,其用途是把人类的语音转换为计算机可以识别的文本信息。语音识别技术已经在智能音箱、智能手机等设备中广泛应用,在未来,语音识别技术将进一步地应用到…

    大数据 2023年4月19日
    00
  • 大数据教程:关于大数据您需要知道的一切!

    无论您是不是业内人士,对于大数据这个词一定不陌生。在过去的 4 到 5 年里,每个人都在谈论大数据。但是您真的知道大数据到底是什么吗?它如何影响我们的生活?大量企业寻找具有大数据技能的专业人士的目的是什么?在本大数据教程中,将带您全面了解大数据。 大数据的来源 由于多种原因,近些年地球上的数据量呈指数级增长。各种来源和我们的日常活动会产生大量数据。随着互联网…

    2023年1月8日
    00
  • 大数据技术的现状与面临的挑战

    本文主要从技术层面探讨大数据目前的现状以及面临的挑战。在此之前,如果你对大数据的概念还比较模糊,可阅读什么是大数据?了解。 如何定义大数据 目前我们已经了解到,大数据是由于数据量的巨大增长而产生的。所以,“大数据”一词主要描述的是规模巨大的混合数据集,这种数据集是结构化与非结构化数据的融合。 通常,大数据的特征是通过3V来解释的,即体积、速度和多样性。 体积…

    2022年11月17日
    00
  • 大数据分析最热门的6大技术!

    了解如何评估我们公司的运行数据,并从中提取出真正有价值的内容,是企业在大数据时代取得成功的关键因素之一。 问题在于如何提取、选择、组织和理解所有这些潜在的促进业务的数据?这很可能是一个雷区,数据太多而时间又太少了。 这时候,就需要使用到大数据分析技术作为解决方案了! 什么是数据分析? 清理、转换和建模数据以发现用于公司决策的相关信息被称为数据分析。数据分析的…

    2023年2月7日 大数据
    20
  • 大数据中的常用技术有哪些?

    大数据中的常用技术有很多种,这里列举其中的几种主要技术。 Apache Hadoop Apache Hadoop 是一个开源的分布式计算机软件框架。使用 Hadoop 可以处理大数据集(如:超过 100GB)存储和分析工作。Hadoop 统计上已经成为大数据处理领域的事实标准。Hadoop 采用了分布式存储和计算的思想,底层基于 HDFS,MapReduce…

    大数据 2023年4月19日
    00
  • 大数据如何帮助企业寻找新的商机?

    当前,由于人工智能和机器学习的发展,大数据不仅只适用于大企业,即使是最小的公司也正在寻找使用更精简、更高效的系统。这些系统可以帮助企业提供比以前更完整的运营情况。 并且随着数据数量出现的前所未有的增长,企业必须学会最大限度地利用这些数据。 大数据是数据科学和商业战略的纽带,为打造竞争优势提供了新的机会。它使企业能够利用数据作为战略资产,为他们提供相关的实时信…

    2023年2月7日
    10

评论列表(1条)

合作推广
合作推广
分享本页
返回顶部