下面我将详细介绍如何使用Handtrack.js库实现实时监测手部运动。
1. 简介
Handtrack.js是一个基于Tensorflow.js的开源JavaScript库,用于实时监测手部运动。它使用深度学习模型实现手部位置的检测,并可以通过调用API实时对手部位置进行跟踪。Handtrack.js可以在浏览器中运行,而无需安装任何其他软件。
2. 前提条件
在使用Handtrack.js之前,你需要了解HTML、CSS和JavaScript语言,并具备一定的编程基础。
3. 安装Handtrack.js
在使用Handtrack.js之前,你需要先将其安装到你的项目中。你可以使用npm或直接下载前端JS文件进行安装。在这里,我们介绍如何通过npm安装Handtrack.js:
- 在终端中,进入你的项目所在的目录。
- 运行以下命令,安装Handtrack.js:
npm install handtrackjs
- 等待安装完成后,在你的项目中引入手部跟踪库:
javascript
import * as handTrack from 'handtrackjs';
4. 使用Handtrack.js
使用Handtrack.js需要以下几个步骤:
4.1 加载模型
首先,需要在你的HTML文件中引入Handtrack.js的模型文件。你可以在下面的GitHub链接中找到预训练的模型(model.json、metadata.json和weights.bin):
https://github.com/victordibia/handtracking
你只需要将这三个文件下载并保存到你的项目中,然后在HTML文件中引用它们即可:
<script src="path/to/model.json"></script>
<script src="path/to/metadata.json"></script>
<script src="path/to/weights.bin"></script>
然后,使用以下代码加载模型:
const model = await handTrack.load({
model: 'path/to/model.json',
metadata: 'path/to/metadata.json',
weights: 'path/to/weights.bin'
});
4.2 检测手部位置
加载模型后,你可以使用以下代码来检测手部位置:
const video = document.createElement('video');
const canvas = document.createElement('canvas');
const ctx = canvas.getContext('2d');
navigator.mediaDevices.getUserMedia({video: true}).then(stream => {
video.srcObject = stream;
video.play();
});
video.addEventListener('loadeddata', async () => {
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
const predictions = await model.detect(video);
predictions.forEach(prediction => {
const {x, y, width, height} = prediction.bbox;
ctx.strokeRect(x, y, width, height);
});
requestAnimationFrame(() => {
this.detectHands(video, model);
});
});
这段代码会创建一个video元素和一个canvas元素,并从摄像头中获取视频流。然后,将视频流绘制到canvas元素上,并使用Handtrack.js的API检测手部位置并将其绘制到canvas上。
4.3 实时跟踪手部位置
要实现实时跟踪手部位置,你需要对检测代码进行轮询,并在检测新的手部位置时更新canvas元素。以下是一个示例:
let startTime = new Date().getTime();
async function detectHands(video, model) {
const currentTime = new Date().getTime();
if (currentTime - startTime >= 100) {
startTime = currentTime;
const predictions = await model.detect(video);
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
ctx.clearRect(0, 0, canvas.width, canvas.height);
predictions.forEach(prediction => {
const {x, y, width, height} = prediction.bbox;
ctx.strokeRect(x, y, width, height);
});
}
requestAnimationFrame(() => {
this.detectHands(video, model);
});
}
这段代码将轮询Handtrack.js的API,每隔约100毫秒检测一次手部位置。如果有新的手部位置,则将其绘制到canvas元素上。
5. 示例代码
下面是两个使用Handtrack.js检测手部位置的示例代码:
5.1 手势识别
这个示例演示了如何识别简单的手势,例如“OK”和“心形”:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Handtrack.js Gesture Recognition</title>
<script src="path/to/handtrack.js"></script>
</head>
<body>
<video id="video" width="640" height="480" autoplay></video>
<canvas id="canvas" width="640" height="480"></canvas>
<script>
const video = document.getElementById('video');
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
const model = await handTrack.load({
model: 'path/to/model.json',
metadata: 'path/to/metadata.json',
weights: 'path/to/weights.bin'
});
navigator.mediaDevices.getUserMedia({video: true}).then(stream => {
video.srcObject = stream;
video.play();
});
video.addEventListener('loadeddata', async () => {
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
requestAnimationFrame(() => {
detectHands(video, model);
});
});
async function detectHands(video, model) {
const predictions = await model.detect(video);
const okEmoji = '\u{1F44C}';
const heartEmoji = '\u2764\uFE0F';
predictions.forEach(prediction => {
const {x, y, width, height} = prediction.bbox;
ctx.strokeRect(x, y, width, height);
if (width > 100 && height > 100) {
const centerX = x + width / 2;
const centerY = y + height / 2;
if (centerX > video.videoWidth / 2 - 50 && centerX < video.videoWidth / 2 + 50
&& centerY > video.videoHeight / 2 - 50 && centerY < video.videoHeight / 2 + 50) {
ctx.font = '48px serif';
ctx.fillText(okEmoji, centerX, centerY);
} else if (centerX > video.videoWidth / 2 - 100 && centerX < video.videoWidth / 2
&& centerY > video.videoHeight / 2 - 100 && centerY < video.videoHeight / 2) {
ctx.font = '48px serif';
ctx.fillText(heartEmoji, centerX, centerY);
}
}
});
requestAnimationFrame(() => {
detectHands(video, model);
});
}
</script>
</body>
</html>
5.2 点击和拖拽
这个示例演示了如何使用鼠标来拖动一个元素,并使用Handtrack.js检测手动是否放下:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>Handtrack.js Click and Drag</title>
<style>
#box {
width: 100px;
height: 100px;
background-color: red;
position: absolute;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
}
</style>
<script src="path/to/handtrack.js"></script>
</head>
<body>
<video id="video" width="640" height="480" autoplay></video>
<canvas id="canvas" width="640" height="480"></canvas>
<div id="box"></div>
<script>
const video = document.getElementById('video');
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
const model = await handTrack.load({
model: 'path/to/model.json',
metadata: 'path/to/metadata.json',
weights: 'path/to/weights.bin'
});
navigator.mediaDevices.getUserMedia({video: true}).then(stream => {
video.srcObject = stream;
video.play();
});
let isHandDown = false;
let mouseX = 0;
let mouseY = 0;
video.addEventListener('loadeddata', async () => {
canvas.width = video.videoWidth;
canvas.height = video.videoHeight;
requestAnimationFrame(() => {
detectHands(video, model);
});
});
async function detectHands(video, model) {
const predictions = await model.detect(video);
const box = document.getElementById('box');
predictions.forEach(prediction => {
const {x, y, width, height} = prediction.bbox;
ctx.strokeRect(x, y, width, height);
if (width > 100 && height > 100) {
const centerX = x + width / 2;
const centerY = y + height / 2;
mouseX = centerX;
mouseY = centerY;
const isHandUp = centerY < video.videoHeight / 2;
if (isHandUp && !isHandDown) {
isHandDown = true;
box.style.backgroundColor = 'green';
box.style.cursor = 'grabbing';
box.style.userSelect = 'none';
box.onmousedown = function(event) {
event.preventDefault();
box.style.position = 'absolute';
box.style.left = event.pageX - box.offsetWidth / 2 + 'px';
box.style.top = event.pageY - box.offsetHeight / 2 + 'px';
const moveHandler = function(event) {
box.style.left = event.pageX - box.offsetWidth / 2 + 'px';
box.style.top = event.pageY - box.offsetHeight / 2 + 'px';
};
const upHandler = function() {
isHandDown = false;
box.style.backgroundColor = 'red';
box.style.cursor = 'grab';
box.style.userSelect = 'auto';
document.removeEventListener('mousemove', moveHandler);
document.removeEventListener('mouseup', upHandler);
};
document.addEventListener('mousemove', moveHandler);
document.addEventListener('mouseup', upHandler);
};
} else if (!isHandUp && isHandDown) {
isHandDown = false;
}
}
});
if (isHandDown) {
box.style.left = mouseX - box.offsetWidth / 2 + 'px';
box.style.top = mouseY - box.offsetHeight / 2 + 'px';
}
requestAnimationFrame(() => {
detectHands(video, model);
});
}
</script>
</body>
</html>
这个代码块创建了一个红色的盒子,当你将手举起并放下时,盒子开始变绿色,并且你可以使用鼠标拖动它。当你将手提起时,盒子变为红色,不能拖动。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Handtrack.js库实现实时监测手部运动(推荐) - Python技术站