Python之Numpy的超实用基础详细教程

Python之Numpy的超实用基础详细教程

NumPy模块的基本概念

NumPy是Python中一个非常流行的学计算库,提供了许多常用的数学函数和工具。Py的主要特点是提供高效的多维数组,可以快速进行数学运算和数据处理。

数组的创建

我们可以NumPy库中的np.array()函数来创建数组。下面一个创建一维数组的示例:

import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3, 4, 5])

# 打印数组
print(a)

在上面的示例中,使用np.array()函数创建了一维a,后使用print()`函数打印出了数组。

也可以使用嵌套列表来创建维数组。下面是一个创建二维数组的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8 9]])

# 打印数组
print(a)
`

在上面的示例中,使用嵌套列表创建了一个二维数组`a`,然后使用`print()`函数打印出了数组。

## 数组的索引和切片

我们可以使用索引和切片访问数组中的元素。下面是一个一维数组索引和切片的例:

```python
import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3, 4, 5])

# 访问数组中的第一个元素
print(a[0])

# 访问数组中的最后一个元素
print(a[-1])

# 访问数组中的前三个元素
print(a[:3])

# 访问数组中的后两个元素
print(a2:])

在上面的示例,使用索引和切片来访问一维a中的元素。使用[]来访问数组中的元素,使用:来进行切片操作。

我们也可以使用索引和切片来访问二维数组中的元素。下面是一个二维数组索引和切片的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 访问数组中的第一个元素
print(a[0, 0])

# 访问数组中的最后一个元素
print(a[-1, -1])

# 访数组中的第一列
print(a[:, 0])

# 访问数组的第一行
print(a[0, :])

在上面的示中,使用索引和切片来访问二维数组a中的元素。使用,来分隔行和列,使用:来进行切片操作。

数组运算

我们可以使用运算符来对数组进行加减乘除运算。下面是一维数组加减乘除的例:

import numpy as np

# 创建两个一维数组
a = np.array([1, 2, ])
b = np.array([4, 5, 6])

# 对两个数组进行加法运算
c = a + b

# 对两个数组进行减法运算
d = a -

# 对两个数组进行乘法运算
e = a * b

# 对两个数组法运算
f = a / b

# 打印结果
print(c)
print(d)
print(e)
print(f)

在上面的示例中,首先创建了两个一维数组ab,然后使用加减乘除运算符对它们加减乘除运算。最后,使用print()函数打出了运算结果。

也可以使用运算符来对二维数组进行减乘除运算。下面是一个二维数组加减乘除的例:

 numpy as np

# 创建两个二维数组
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

# 对两数组进行加法运算
c = a + b

# 对两个数组进行减法运算
d = a - b

# 对两个数组进行乘法运算
e = a * b

# 对两个数组进行除法运算
f = a / b

# 打印结果
print(c)
print(d)
print(e)
print(f)

在上面的示中,首先创建了两二维数组ab,然后使用加减乘除运算符对它们进行加减乘除运算。最后,使用`print函数打印出了运算的结果。

数组的广播

当两个数组的形状不同时,我们可以使用广播机制来进行运算。下面是一个广播机制的示例:

import numpy as np

# 创建一维数组
a = np.array([1 2, 3])

# 创建一个标量
b = 2

# 对数组进行乘法算
c = a * b

# 打印结果
print(c)

在上面的示例中,首先创建了一个一维数组a和一个标量b,然使用乘法运算对它们进行乘法运算。由于标量b可以被广播到数组a的形状,所以我们可以接对它们进行乘运算。最后,使用print()函数打印出了运算的结果。

数组的排序

我们可以使用np.sort()函数对数组进行排序。下面是一个一维数组排序的示例:

import numpy as np

# 创建一个一维数组
a = np.array([, 1, 4, 2, ])

# 对数组进行排序
b = np.sort(a)

# 打印结果
print(b)

在上面的示例中,首先创建了一个一维数组a,然后使用np.sort()函数对数组进行排序。最后,使用()函数打印出了排序后的结果。

我们也可以使用np.sort()函数二维数组进行排序。下面是一个二维数组排序的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[3, 1, 4], [2, 5, 6]])

# 对数组进行排序
b = np.sort(a, axis=1)

# 打印结果
print(b)

在上面的示中,首先创建了二维数组a,然后使用np.sort()函数对数组进行排序,使用axis参数指定按行排序。最后,使用print()函数打印出了排序后的结果。

示例一:计算数组的平均值和标准差

我们可以使用NumPy库中的np.mean()``np.std()函数来计算数组的平均值和标准差。下面是一个一维数组计算平均值和标准差的示例:

import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3, 4, 5])

# 计算数组的平均值
mean = np.mean(a)

# 计算数组的标准差
std = np.std(a)

# 打印结果
print("数组的平均值为:", mean)
print("数组的标准差为:", std)

在上面的示例中,我们首先np.array()函数创建了一个一维a,然后使用np.mean()np.std()函数分别计算了数组的平均和标准差。最后,我们使用print()函数打印出了计算结果。

我们也可以使用np.mean()np.std()函数来计算二维数组的平均值和标准差下面是一个二维数组计算平均值和标准差的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[1, 2, 3], [4,5, 6], [7, 8, 9]])

# 计算数组的平均值
mean = np.mean(a)

# 计算数组的标准差
std = np.std(a)

# 打印结果
("数组的平均值为:", mean)
print("数组的标差为", std)

在上面的示例中,我们首先使用.array()函数创建了一个二维数组a,然后使用np.mean()np.std()函数分别计算了数组的平均值和标准差。最后,我们使用print()函数打印出了计算结果。

示例二:数组的排序

我们使用np.sort()函数对数组进行排序。下面是一个一维数组排序的示例:

import numpy as np

# 创建一个一维数组
a = np.array([3, 1, 4, 2, ])

# 对数组进行排序
b = np.sort(a)

# 打印结果
print("排序后的数组为:", b)
`

在上面的示例中,我们首先使用`np.array()`函数创建了一个一维数组`a`,然后使用`np.sort()`函数对数组进行排序。最后,使用`print()`函数打印出了排序后的结果。

我们也可以使用`.sort()`函数对二维数组进行排序。下面是一个二维数组排序的示例:

```python
import numpy as np

# 创建一个二维数组
a = np.array([[3, 1, 4], [2, 5, 6]])

# 对数组进行排序
b = np.sort(a, axis=1)

# 打印结果
("排序后的数组为:", b)

在上面的示中,我们首先使用np.array()函数创建了一个二维数组a,然后使用np.sort()函数对数组进行排序,使用axis参数指定按行排序。最后,使用print()函数打印出了排序后的结果。

结语

本攻略详细讲解了如何使用NumPy进行数组数据处理,包括计算数组的平均值和标准差以及对数组进行排序。这些操作可以帮助我们更加高效地处理和分析数据。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python之Numpy的超实用基础详细教程 - Python技术站

(0)
上一篇 2023年5月13日
下一篇 2023年5月13日

相关文章

  • Numpy数组转置的两种实现方法

    以下是关于“Numpy数组转置的两种实现方法”的完整攻略。 背景 在NumPy中,数组转置是一个常见的操作。在本攻略中我们将介绍两种现Numpy数组转置的方法。 实现 方法1:使用属性 NumPy数组有一个T属性,可以用于转置数组。T属性返回数组的转置视图,而不是复制数组。 以下是一个示例,展示如何使用T属性转置数组: import numpy as np …

    python 2023年5月14日
    00
  • PyTorch中 tensor.detach() 和 tensor.data 的区别解析

    当我们使用PyTorch时,经常会遇到需要“切断计算图”的情况,同时需要保留某些tensor的值。两个常用的方法就是 detach() 和 data,但它们具有一些区别。 detach()和data的基本作用 detach(): 用于将一个tensor从计算图上分离出来,并返回一个新的不与计算图相连接的tensor。使用detach()可以阻止梯度反向传播算…

    python 2023年5月14日
    00
  • 深入理解NumPy简明教程—数组1

    深入理解NumPy简明教程—数组1 NumPy是Python中一个重要的科学计算库,提供了高效的维数组对象和各种派生对象,以及用于计算的各种函数。本文将深入解Num中数组。 数组的创建 在NumPy中,可以使用np.array()函数创建数组。下面是一个示例: import numpy as #一个一维数组 a = np.array([1, 2, 3, …

    python 2023年5月13日
    00
  • python中numpy 常用操作总结

    Python中Numpy常用操作总结 Numpy是Python中一个非常强大的数学库,它提供了许多高效的数学函数和工具,特别是对于数组和矩阵的处理。下面是Python中Numpy常操作的总结。 安装Numpy 在使用Numpy之前,需要先安装它。可以使用以下命令在终端中安装Numpy: pip install numpy 导入Numpy 在Python中,我…

    python 2023年5月13日
    00
  • 最新Pygame zero最全集合

    以下是最新Pygame zero最全集合的完整攻略,包括两个示例: 最新Pygame zero最全集合 步骤1:安装Pygame zero 首先,需要安装Pygame zero。可以使用以下命令安装Pygame zero: pip install pgzero 步骤2:创建Pygame zero游戏 接下来,需要创建Pygame zero游戏。可以使用以下代…

    python 2023年5月14日
    00
  • pytorch多进程加速及代码优化方法

    PyTorch是一个非常流行的深度学习框架,可以用于训练和部署神经网络模型。在训练大型模型时,多进程加速和代码优化是提高训练速度和效率的关键。以下是PyTorch多进程加速及代码优化方法的完整攻略,包括代码实现的步骤和示例说明: 多进程加速 在PyTorch中,可以使用多进程加速来提高训练速度和效率。以下是使用多进程加速的示例代码: import torch…

    python 2023年5月14日
    00
  • Python实现合并excel表格的方法分析

    Python实现合并Excel表格的方法分析 在实际工作中,我们经常需要将多个Excel表格合并成一个表格。本攻略将介绍Python实现合并Excel表格的方法,包括如何读取Excel表格、如何合并Excel表格、如何将合并后的表格保存为新的Excel文件等。 读取Excel表格 在Python中,我们可以使用pandas库来读取Excel表格。以下是一个示…

    python 2023年5月14日
    00
  • Pytorch实现LSTM案例总结学习

    Pytorch实现LSTM案例总结学习 前言 作为深度学习领域的重要分支,循环神经网络(RNN)和长短时记忆网络(LSTM)在很多任务中都有着广泛的应用。本文以Pytorch框架为例,介绍了如何使用Python编写LSTM神经网络模型,并将其应用于时间序列预测和自然语言生成等案例中。读者可根据自己的需求和兴趣,针对具体的数据集和任务进行模型的调试和优化。 L…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部