Python之Numpy的超实用基础详细教程

Python之Numpy的超实用基础详细教程

NumPy模块的基本概念

NumPy是Python中一个非常流行的学计算库,提供了许多常用的数学函数和工具。Py的主要特点是提供高效的多维数组,可以快速进行数学运算和数据处理。

数组的创建

我们可以NumPy库中的np.array()函数来创建数组。下面一个创建一维数组的示例:

import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3, 4, 5])

# 打印数组
print(a)

在上面的示例中,使用np.array()函数创建了一维a,后使用print()`函数打印出了数组。

也可以使用嵌套列表来创建维数组。下面是一个创建二维数组的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8 9]])

# 打印数组
print(a)
`

在上面的示例中,使用嵌套列表创建了一个二维数组`a`,然后使用`print()`函数打印出了数组。

## 数组的索引和切片

我们可以使用索引和切片访问数组中的元素。下面是一个一维数组索引和切片的例:

```python
import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3, 4, 5])

# 访问数组中的第一个元素
print(a[0])

# 访问数组中的最后一个元素
print(a[-1])

# 访问数组中的前三个元素
print(a[:3])

# 访问数组中的后两个元素
print(a2:])

在上面的示例,使用索引和切片来访问一维a中的元素。使用[]来访问数组中的元素,使用:来进行切片操作。

我们也可以使用索引和切片来访问二维数组中的元素。下面是一个二维数组索引和切片的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 访问数组中的第一个元素
print(a[0, 0])

# 访问数组中的最后一个元素
print(a[-1, -1])

# 访数组中的第一列
print(a[:, 0])

# 访问数组的第一行
print(a[0, :])

在上面的示中,使用索引和切片来访问二维数组a中的元素。使用,来分隔行和列,使用:来进行切片操作。

数组运算

我们可以使用运算符来对数组进行加减乘除运算。下面是一维数组加减乘除的例:

import numpy as np

# 创建两个一维数组
a = np.array([1, 2, ])
b = np.array([4, 5, 6])

# 对两个数组进行加法运算
c = a + b

# 对两个数组进行减法运算
d = a -

# 对两个数组进行乘法运算
e = a * b

# 对两个数组法运算
f = a / b

# 打印结果
print(c)
print(d)
print(e)
print(f)

在上面的示例中,首先创建了两个一维数组ab,然后使用加减乘除运算符对它们加减乘除运算。最后,使用print()函数打出了运算结果。

也可以使用运算符来对二维数组进行减乘除运算。下面是一个二维数组加减乘除的例:

 numpy as np

# 创建两个二维数组
a = np.array([[1, 2], [3, 4]])
b = np.array([[5, 6], [7, 8]])

# 对两数组进行加法运算
c = a + b

# 对两个数组进行减法运算
d = a - b

# 对两个数组进行乘法运算
e = a * b

# 对两个数组进行除法运算
f = a / b

# 打印结果
print(c)
print(d)
print(e)
print(f)

在上面的示中,首先创建了两二维数组ab,然后使用加减乘除运算符对它们进行加减乘除运算。最后,使用`print函数打印出了运算的结果。

数组的广播

当两个数组的形状不同时,我们可以使用广播机制来进行运算。下面是一个广播机制的示例:

import numpy as np

# 创建一维数组
a = np.array([1 2, 3])

# 创建一个标量
b = 2

# 对数组进行乘法算
c = a * b

# 打印结果
print(c)

在上面的示例中,首先创建了一个一维数组a和一个标量b,然使用乘法运算对它们进行乘法运算。由于标量b可以被广播到数组a的形状,所以我们可以接对它们进行乘运算。最后,使用print()函数打印出了运算的结果。

数组的排序

我们可以使用np.sort()函数对数组进行排序。下面是一个一维数组排序的示例:

import numpy as np

# 创建一个一维数组
a = np.array([, 1, 4, 2, ])

# 对数组进行排序
b = np.sort(a)

# 打印结果
print(b)

在上面的示例中,首先创建了一个一维数组a,然后使用np.sort()函数对数组进行排序。最后,使用()函数打印出了排序后的结果。

我们也可以使用np.sort()函数二维数组进行排序。下面是一个二维数组排序的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[3, 1, 4], [2, 5, 6]])

# 对数组进行排序
b = np.sort(a, axis=1)

# 打印结果
print(b)

在上面的示中,首先创建了二维数组a,然后使用np.sort()函数对数组进行排序,使用axis参数指定按行排序。最后,使用print()函数打印出了排序后的结果。

示例一:计算数组的平均值和标准差

我们可以使用NumPy库中的np.mean()``np.std()函数来计算数组的平均值和标准差。下面是一个一维数组计算平均值和标准差的示例:

import numpy as np

# 创建一个一维数组
a = np.array([1, 2, 3, 4, 5])

# 计算数组的平均值
mean = np.mean(a)

# 计算数组的标准差
std = np.std(a)

# 打印结果
print("数组的平均值为:", mean)
print("数组的标准差为:", std)

在上面的示例中,我们首先np.array()函数创建了一个一维a,然后使用np.mean()np.std()函数分别计算了数组的平均和标准差。最后,我们使用print()函数打印出了计算结果。

我们也可以使用np.mean()np.std()函数来计算二维数组的平均值和标准差下面是一个二维数组计算平均值和标准差的示例:

import numpy as np

# 创建一个二维数组
a = np.array([[1, 2, 3], [4,5, 6], [7, 8, 9]])

# 计算数组的平均值
mean = np.mean(a)

# 计算数组的标准差
std = np.std(a)

# 打印结果
("数组的平均值为:", mean)
print("数组的标差为", std)

在上面的示例中,我们首先使用.array()函数创建了一个二维数组a,然后使用np.mean()np.std()函数分别计算了数组的平均值和标准差。最后,我们使用print()函数打印出了计算结果。

示例二:数组的排序

我们使用np.sort()函数对数组进行排序。下面是一个一维数组排序的示例:

import numpy as np

# 创建一个一维数组
a = np.array([3, 1, 4, 2, ])

# 对数组进行排序
b = np.sort(a)

# 打印结果
print("排序后的数组为:", b)
`

在上面的示例中,我们首先使用`np.array()`函数创建了一个一维数组`a`,然后使用`np.sort()`函数对数组进行排序。最后,使用`print()`函数打印出了排序后的结果。

我们也可以使用`.sort()`函数对二维数组进行排序。下面是一个二维数组排序的示例:

```python
import numpy as np

# 创建一个二维数组
a = np.array([[3, 1, 4], [2, 5, 6]])

# 对数组进行排序
b = np.sort(a, axis=1)

# 打印结果
("排序后的数组为:", b)

在上面的示中,我们首先使用np.array()函数创建了一个二维数组a,然后使用np.sort()函数对数组进行排序,使用axis参数指定按行排序。最后,使用print()函数打印出了排序后的结果。

结语

本攻略详细讲解了如何使用NumPy进行数组数据处理,包括计算数组的平均值和标准差以及对数组进行排序。这些操作可以帮助我们更加高效地处理和分析数据。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python之Numpy的超实用基础详细教程 - Python技术站

(0)
上一篇 2023年5月13日
下一篇 2023年5月13日

相关文章

  • numpy.random模块用法总结

    以下是关于NumPy.random模块用法总结的攻略: NumPy.random模块用法总结 NumPy.random模块提供了一系列用于生成随机数的函数。以下是一些常用的函数和用法: rand函数 可以使用NumPy的rand()函数生成指定形状的随机数组。以下是一个示例: import numpy as np # 生成一个形状为(2, 3)的随机数组 a…

    python 2023年5月14日
    00
  • Python ndarray 数组的变形详情

    以下是Python ndarray数组的变形详情的攻略: Python ndarray 数组的变形详情 在NumPy中,可以使用reshape()函数来改变ndarray数组的形状。以下是一些实现方法: 将一维数组变形为二维数组 可以使用reshape()函数将一维数组变形为二维数组。以下是一个示例: import numpy as np a = np.ar…

    python 2023年5月14日
    00
  • 关于Numpy数据类型对象(dtype)使用详解

    Numpy数据类型对象(dtype)使用详解 NumPy是Python中用于科学计算的一个重要的库,它提供了高效的多维数组和与之相关的量。在NumPy中,数据类型对象(dtype)是一个特殊的对象,用于描述数组元素的数据类型。本文将详细讲解NumPy数据类型对象(dtype)的使用方法,包括数据对象的创建、数据类型的属性、数据类型对象的转换等方法。 数据类型…

    python 2023年5月14日
    00
  • python+numpy按行求一个二维数组的最大值方法

    在Python中,使用NumPy库可以方便地对数组进行各种操作,包括按行或列求最大值。下面是按行求一个二维数组的最大值方法的详细攻略。 方法一:使用max函数 在NumPy中,可以使用max函数来求一个二维数组的最大值。默认情况下,max函数会返回整个数组的最大值。但是,我们可以通过指定axis参数来按行或列求最大值。下面是一个使用max函数按行求一个二维数…

    python 2023年5月14日
    00
  • Pytorch实现LSTM案例总结学习

    Pytorch实现LSTM案例总结学习 前言 作为深度学习领域的重要分支,循环神经网络(RNN)和长短时记忆网络(LSTM)在很多任务中都有着广泛的应用。本文以Pytorch框架为例,介绍了如何使用Python编写LSTM神经网络模型,并将其应用于时间序列预测和自然语言生成等案例中。读者可根据自己的需求和兴趣,针对具体的数据集和任务进行模型的调试和优化。 L…

    python 2023年5月14日
    00
  • Python Numpy中数组的集合操作详解

    以下是关于“Python Numpy中数组的集合操作详解”的完整攻略。 集合操作的概念 NumPy中的数组可以进行集合操作,包括求交集、并集、差集等。这些操作可以帮助我们更方便地处理数组数据。 集合操作的使用 下面是一些常用的集合操作函数: np.intersect1d(arr1, arr2):返回两个数组的交集。 np.union1d(arr1, arr2…

    python 2023年5月14日
    00
  • scikit-learn线性回归,多元回归,多项式回归的实现

    scikit-learn线性回归,多元回归,多项式回归的实现 简介 scikit-learn是Python中一个非常流行的机器学习库,它提供了许多常用的机器习算法和工具。其中包括线性回归、多元回归和多项式回归等。本攻略将详细讲解如何使用scikit-learn实现这些回归模型。 线性回归 线性回归是一种常用的回归模型,它可以用来预测一个连续的数值。在scik…

    python 2023年5月13日
    00
  • Win10下用Anaconda安装TensorFlow(图文教程)

    Win10下用Anaconda安装TensorFlow(图文教程) 在本攻略中,我们将介绍如何在Windows 10操作系统下使用Anaconda安装TensorFlow。我们将提供详细的步骤和示例代码,以帮助读者更好地理解安装过程。 问题描述 TensorFlow是一个非常流行的机器学习框架,它可以用于构建各种深度学习模型。在Windows 10操作系统下…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部