多项式回归,采用升维的方式,把x的幂当作新的特征,再利用线性回归方法解决
import numpy as np import matplotlib.pyplot as plt x = np.random.uniform(-4,4,100) y = 0.6*x**2 + x + 2 + np.random.normal(size=100) # 单线性回归 from sklearn.linear_model import LinearRegression lin_reg = LinearRegression() lin_reg.fit(X,y) y_predict = lin_reg.predict(X) # 多线性回归 X2 = np.hstack([X,X**2]) lin_reg = LinearRegression() lin_reg.fit(X2,y) y_predict2 = lin_reg.predict(X2) plt.scatter(X,y) plt.plot(np.sort(x),y_predict2[np.argsort(x)],color='r') plt.show() lin_reg.coef_ # array([0.98046078, 0.59747765]) lin_reg.intercept_ # 2.0771588970176973
Scikit-learn中实现
from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures(degree=2) # degree表示设置的最高幂的次数 X2 = poly.fit_transform(X) X2.shape # (100, 3) lin_reg = LinearRegression() lin_reg.fit(X2,y) y_predict2 = lin_reg.predict(X2) plt.scatter(X,y) plt.plot(np.sort(x),y_predict2[np.argsort(x)],color='r') plt.show() lin_reg.coef_ # array([0. ,0.98046078, 0.59747765]) lin_reg.intercept_ # 2.0771588970176964
Pipeline实现
from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler pipeline = Pipeline([ ('poly',PolynomialFeatures(degree=2)), ('std_scaler',StandardScaler()), ('lin_reg',LinearRegression()) ]) X3 = pipeline.fit(X,y) y_predict3 = pipeline.predict(X) # pipeline.coef_ # 该项报错! 放入管道后,不能直接取系数???
过拟合和欠拟合
def plot_learning_curve(algo, X_train, X_test, y_train, y_test): train_score = [] test_score = [] for i in range(1, len(X_train)+1): algo.fit(X_train[:i], y_train[:i]) y_train_predict = algo.predict(X_train[:i]) train_score.append(mean_squared_error(y_train[:i], y_train_predict)) y_test_predict = algo.predict(X_test) test_score.append(mean_squared_error(y_test, y_test_predict)) plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(train_score), label="train") plt.plot([i for i in range(1, len(X_train)+1)], np.sqrt(test_score), label="test") plt.legend() plt.axis([0, len(X_train)+1, 0, 4]) plt.show() plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test) poly2_reg = PolynomialRegression(degree=2) plot_learning_curve(poly2_reg, X_train, X_test, y_train, y_test)
交叉验证
默认分成3份,要自定义,则修改参数 cv
cross_val_score(estimator,X_train,y_train) 结果返回3组(默认cv=3)的评分
import numpy as np from sklearn import datasets digits = datasets.load_digits() X,y = digits.data,digits.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=666) from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier knn_clf = KNeighborsClassifier() cross_val_score(knn_clf,X_train,y_train) # array([0.98895028, 0.97777778, 0.96629213]) best_k, best_p, best_score = 0, 0, 0 for k in range(2, 11): for p in range(1, 6): knn_clf = KNeighborsClassifier(weights="distance", n_neighbors=k, p=p) # knn_clf.fit(X_train, y_train) # score = knn_clf.score(X_test, y_test) scores = cross_val_score(knn_clf,X_train,y_train,cv=3) score = np.mean(scores) if score > best_score: best_k, best_p, best_score = k, p, score print("Best K =", best_k) print("Best P =", best_p) print("Best Score =", best_score) ''' Best K = 2 Best P = 2 Best Score = 0.9823599874006478 ''' best_knn_clf = KNeighborsClassifier(weights="distance", n_neighbors=2, p=2) best_knn_clf.fit(X_train,y_train) # y_predict = best_knn_clf.predict(X_test) best_knn_clf.score(X_test,y_test) # 0.980528511821975
回顾网格搜索
from sklearn.model_selection import GridSearchCV grid_params = { 'weights': ['distance'], 'n_neighbors': [i for i in range(2, 11)], 'p': [i for i in range(1, 6)] } knn2_clf = KNeighborsClassifier() clf = GridSearchCV(knn2_clf,grid_params,cv=3,n_jobs=-1) clf.fit(X_train,y_train) clf.best_score_ # 0.9823747680890538 clf.best_params_ # {'n_neighbors': 2, 'p': 2, 'weights': 'distance'} clf.best_estimator_ # KNeighborsClassifier(n_neighbors=2, p=2,weights='distance')
偏差和方差
偏差和方差通常是矛盾的.
减低偏差,会提高方差.
减低方差,会提高偏差.
有些算法天生是高方差的算法,如kNN.
非参数学习通常都是高方差算法,因为不对数据进行任何假设.
有些算法天生是高偏差的算法,如线性回归.
参数学习通常都是高偏差算法,因为对数据具有及强的假设.
机器学习算法,通常要解决的是高方差问题,比如过拟合,通常手段:
-
降低模型复杂度
-
减少数据维度;降噪
-
增加样本数
-
使用验证集
-
模型正则化
模型正则化--岭回归
参数--alpha
import numpy as np import matplotlib.pyplot as plt # 构建数据集 np.random.seed(42) x = np.random.uniform(-3.0, 3.0, size=100) X = x.reshape(-1, 1) y = 0.5 * x + 3 + np.random.normal(0, 1, size=100) plt.scatter(x, y) plt.show() # 创建管道--多项式线性回归 from sklearn.pipeline import Pipeline from sklearn.preprocessing import PolynomialFeatures from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LinearRegression def PolynomialRegression(degree): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lin_reg", LinearRegression()) ]) # 切割数据集为训练和测试集 from sklearn.model_selection import train_test_split np.random.seed(666) X_train, X_test, y_train, y_test = train_test_split(X, y) # fit训练数据集,predict测试数据集,求取均方误差MSE from sklearn.metrics import mean_squared_error poly_reg = PolynomialRegression(degree=20) poly_reg.fit(X_train, y_train) y_poly_predict = poly_reg.predict(X_test) mean_squared_error(y_test, y_poly_predict) # 167.94010867293571 # 绘制拟合函数曲线图 def plot_model(model): X_plot = np.linspace(-3, 3, 100).reshape(100, 1) y_plot = model.predict(X_plot) plt.scatter(x, y) plt.plot(X_plot[:,0], y_plot, color='r') plt.axis([-3, 3, 0, 6]) plt.show() plot_model(poly_reg) # 使用岭回归 from sklearn.linear_model import Ridge def RidgeRegression(degree, alpha): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("ridge_reg", Ridge(alpha=alpha)) ]) ridge1_reg = RidgeRegression(20, 0.0001) # 1.3233492754051845 崎岖的线条 # ridge1_reg = RidgeRegression(20, 1) # 1.1888759304218448 崎岖的光滑曲线 # ridge1_reg = RidgeRegression(20, 100) # 1.3196456113086197 光滑的曲线 # ridge1_reg = RidgeRegression(20, 10000) # 1.8408455590998372 和x轴平行的直线 # 解析: 当alpha无穷大时,theta(i,i>=1)的平方必须都趋于0,当theta(i)都等于0时,即y=theta(0),和x轴平行 ridge1_reg.fit(X_train, y_train) y1_predict = ridge1_reg.predict(X_test) mean_squared_error(y_test, y1_predict) # 1.3233492754051845 plot_model(ridge1_reg)
模型正则化--LASSO回归
lasso回归和岭回归比较
# 创建lasso管道 from sklearn.linear_model import Lasso def LassoRegression(degree, alpha): return Pipeline([ ("poly", PolynomialFeatures(degree=degree)), ("std_scaler", StandardScaler()), ("lasso_reg", Lasso(alpha=alpha)) ]) lasso1_reg = LassoRegression(20, 0.01) # 1.1496080843259966 # lasso1_reg = LassoRegression(20, 0.1) # 1.1213911351818648 # lasso1_reg = LassoRegression(20, 1) # 1.8408939659515595 lasso1_reg.fit(X_train, y_train) y1_predict = lasso1_reg.predict(X_test) mean_squared_error(y_test, y1_predict) plot_model(lasso1_reg)
模型泛化--更具普遍性
L1&L2&弹性网络
注: 上述笔记是自己在 慕课网学习 刘宇波老师<Python3入门机器学习 经典算法与应用https://s.imooc.com/Sk8Yr5g
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:机器学习算法之多项式回归 - Python技术站