Opencv 傅立叶变换高通滤波

Opencv 傅立叶变换高通滤波的完整攻略

Opencv 傅立叶变换高通滤波是一种常见的图像处理技术,可以用于图像的频域分析、滤波等操作。本文将详细讲解Opencv 傅立叶变换高通滤波的完整攻略,包括基本原理、方法和两个示例说明。

Opencv 傅立叶变换高通滤波的基本原理

Opencv 傅立叶变换高通滤波是一种基于傅立叶变换的图像处理技术,可以通过对图像进行频域分析,实现图像的高通滤波。高通滤波的基本原理是通过滤波器对图像进行频域滤波,去除低频分量,保留高频分量,从而实现图像的锐化。具体实现方法包括:

  • cv2.dft函数:用于对图像进行傅立叶变换。
  • cv2.idft函数:用于对图像进行傅立叶反变换。
  • np.fft.fftshift函数:用将频域图像的直流分量移动到频谱中心。
  • np.fft.ifftshift函数:用于将频域图像的直流分量移动回原来的位置。

Opencv 傅立叶变高通滤波的使用方法

Opencv库提供cv2.dft和cv2ft函数,可以用于对图像进行傅立叶变换和傅立叶反变换。函数的基本语法如下:

dft = cv2.dft(src, flags[, nonzeroRows])
dst = cv2.idft(src[, flags[, nonzeroRows]])

其中,src表示输入图像,flags表示傅立叶变换的标志,nonzeroRows表示非零行数,dst表示输出图像。

示例说明

下面是两个Opencv 傅立叶变换高通滤波的示例说明:

示例1:使用高通滤波器对图像进行锐化

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg', 0)

# 傅立叶变换
dft = cv2.dft(np.float32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

# 高通滤波器
rows, cols = img.shape
crow, ccol = rows//2, cols//2
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0

# 频域图像与滤波器相乘
fshift = dft_shift * mask

# 傅立叶反变换
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0 img_back[:, :, 1])

# 显示原始图像和锐化后的图像
plt.subplot(121), plt.imshow(img, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Sharpened Image'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和锐化后的图像。

示例2:使用高通滤波器对图像进行边缘检测

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
img = cv2.imread('test.jpg', 0)

# 傅立叶变换
dft = cv2.dft(np32(img), flags=cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)

# 高通滤波器
rows, cols = img.shape
crow, ccol = rows//2, cols//2
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-10:crow+10, ccol-10:ccol+10] = 1

# 频域图像与滤波器相乘
fshift = dft_shift * mask

# 傅立叶反变换
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:, :, 0], img_back[:, :, 1])

# 显示原始图像和边缘检测后的图像
plt.subplot(121), plt.imshow(img cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(img_back, cmap='gray')
plt.title('Edge Detection'), plt.xticks([]), plt.yticks([])
plt.show()

运行该代码,系统会显示原始图像和边缘检测后的图像。

结论

Opencv 傅立叶变换通滤波是一种基于傅立叶变换的图像处理技术,可以通过对图像进行频域分析,实现图像的高通滤波。通过Opencv库中的cv2.dft和cv2.idft函数,可以实现对图像的傅立叶变换和傅立叶反变换。通过本文介绍,您应该已经了解了Op 傅立叶变换高通滤波的基本原理、方法和个示例说明,可以根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 傅立叶变换高通滤波 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 直方图均衡化

    OpenCV 直方图均衡化 OpenCV 直方图均衡化是一种用于增强图像对比度的技术,可以使图像的亮度分布更加均匀,从而提高图像的视觉效果。本文将介绍OpenCV 直方图均衡化的基本原理和使用方法,并提供两个示例。 OpenCV 直方图均衡化的基本理 OpenCV 直方图均衡化基本原理是将图像的像素值进行重新分配,使得图像的亮度分布更加均匀。具实现方法包: …

    python 2023年5月10日
    00
  • Opencv 4-邻域连通域标记

    以下是关于Opencv 4-邻域连通域标记的详细攻略。 Opencv 4-邻域连通域标记基本原理 Opencv 4-邻域通域标记是一种常用的图像处理技术,可以用于在图像中找连通域。具体实现方法包括: cv2.connectedComponents 函数:用于对二值图像进行连通域标记。 4-邻域连通域标记算法的基本原理是将二值图像中的像素点分为若干个连通域,每…

    python 2023年5月10日
    00
  • Opencv 霍夫逆变换

    Opencv 霍夫逆变换是一种基于霍夫变换的图像处理技术,可以将霍夫变换后的参数空间转换回图像空间,从而实现对图像的分割和重建。本文将细讲解 Opencv 霍夫逆变换的完整攻略,包括基本原理、方法和两个示例。 Opencv 霍夫逆变换的基本原理 Opencv 霍夫逆变换是一种基于霍夫变换的图像处理技术,可以将霍夫变换后的参数空间转换回图像空间,从而实现对图像…

    python 2023年5月10日
    00
  • Opencv 伽玛校正

    OpenCV 伽马校正 OpenCV 伽马校正是一种用于图像处理和计算机视觉的重要工具,可以用于调整图像的亮度和对比度。本文将介绍OpenCV 伽马校正的基本原理和使用方法,并提供两个示例。 OpenCV 伽马校正的基本原理 OpenCV 伽马校正是一种线性变换,可以用于调整图像的亮度和对比度。伽马校正的基本原理是通过对图像像素值进行幂次变换,调整图像亮度和…

    python 2023年5月10日
    00
  • Opencv 开运算

    Opencv 开运算是一种常用的图像处理技术,可以用于去除图像中的噪点和细小的物体,同时也可以用于图像的形态学处理。本文将详细讲解Opencv运算的完整攻略,包括基本原理、方法和两个示例。 Opencv 开运算的基本原理 Opencv 开运算是一种基于形态学的处理技术,通过对图像进行腐蚀和胀操作,可以去除图像中的噪点和细小的物体,同时也用于图像的形态学处理。…

    python 2023年5月10日
    00
  • Opencv大津二值化算法

    OpenCV大津二值化算法 OpenCV大津二值化算法是一种自适应阈值分割算法,可以将灰度图像转换为二值图像。该算法基于图像的灰度直方图,通过寻找最佳阈值来实现图像的二值化。本文将介绍大津二值化算法的基本概念和使用方法。 大津二值化算法的基本概念 大津二值化算法是一种自适应阈值分割算法,其基本思想是通过寻找最佳阈值来将图像分为两个部分:前景和背景。最佳阈值是…

    python 2023年5月10日
    00
  • Opencv 简单图像识别第四步

    以下是关于Opencv简单图像识别第四步的详细攻略。 Opencv简单图像识别第四步的基本原理 Opencv简单图像识别第四步是指通过对模型进行评估,来判断模型的性能和准确度。用的评估指标包括准确率、召回、F1值等。 Opencv简单图像识别第四步的步骤 准备测试数据和测试标签 使用训练好的模型进行预测 计算评估指标 示例说明 下面是两个Opencv简单图像…

    python 2023年5月10日
    00
  • Opencv Canny边缘检测 边缘强度

    Opencv Canny边缘检测边缘强度的完整攻略 Opencv Canny边缘检测是一种常用的图像处理技术,可以用于图像的边缘检测、特征提取等。本文将详细讲解Opencv Canny边缘检测边缘强度的完整攻略,包括基本原理、方法和两个示例说明。 Opencv Canny边缘检测的基本原理 Opencv Canny边缘检测是一种基于梯度变化的边缘检测算法,通…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部