一、例子
二、整体代码
import torch from torch.nn import functional as F import torch.nn as nn import torchvision from torchvision import datasets,transforms import torch.optim as optim learning_rate = 1e-2 batch_size = 64 epochs = 10 train_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('datasets/mnist_data', train=True, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), # 数据类型转化 torchvision.transforms.Normalize((0.1307, ), (0.3081, )) # 数据归一化处理 ])), batch_size=batch_size,shuffle=True) test_loader = torch.utils.data.DataLoader(torchvision.datasets.MNIST('datasets/mnist_data/', train=False, download=True, transform=torchvision.transforms.Compose([ torchvision.transforms.ToTensor(), torchvision.transforms.Normalize((0.1307, ), (0.3081, )) ])),batch_size=batch_size,shuffle=False) class MLP(nn.Module): def __init__(self): super(MLP,self).__init__() self.model = nn.Sequential( nn.Linear(784,200), nn.LeakyReLU(inplace = True), nn.Linear(200,200), nn.LeakyReLU(inplace = True), nn.Linear(200,10), nn.LeakyReLU(inplace = True) ) def forward(self,x): x = self.model(x) return x device = torch.device('cuda:0') net = MLP().to(device) optimizer = optim.SGD(net.parameters(),lr = learning_rate) criteon = nn.CrossEntropyLoss().to(device) for epoch in range(epochs): for batch_idx,(data,target) in enumerate(train_loader): data = data.view(-1,28*28) data,target = data.to(device),target.to(device) logits = net(data) loss = criteon(logits,target) optimizer.zero_grad() loss.backward() optimizer.step() if batch_idx % 100 == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), loss.item())) test_loss = 0 correct = 0 for data, target in test_loader: data = data.view(-1, 28 * 28) data, target = data.to(device), target.cuda() logits = net(data) test_loss += criteon(logits, target).item() pred = logits.data.max(1)[1] correct += pred.eq(target.data).sum() test_loss /= len(test_loader.dataset) print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( test_loss, correct, len(test_loader.dataset), 100. * correct / len(test_loader.dataset)))
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch(十九):MNIST打印准确率和损失 - Python技术站