解决tensorflow模型参数保存和加载的问题

  1. 保存和加载模型参数
  2. 保存模型参数可以使用tf.train.Saver对象,其中可以通过save()函数指定保存路径和文件名,保存的格式通常为.ckpt
  3. 加载模型参数需要先定义之前保存模型的结构,可以使用tf.train.import_meta_graph()函数导入之前模型的结构,再通过saver.restore()函数加载之前训练的参数

以下是示例代码:

import tensorflow as tf

#定义一个简单的模型
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b

#定义损失函数和训练操作
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

saver = tf.train.Saver()

#保存模型
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(1000):
        batch_xs, batch_ys = get_batch() #替换成读取数据的代码
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    saver.save(sess, 'model.ckpt')

#加载模型
with tf.Session() as sess:
    saver.restore(sess, 'model.ckpt')
    print('Model loaded successfully')

  1. 以不同版本TensorFlow保存和加载模型参数
  2. 如果保存的模型参数使用的是不同版本的TensorFlow,则需要指定读入模型参数的格式,即需要使用tf.train.Savervar_list参数手动指定需要读取和存储的变量
  3. 对于使用较早版本的TensorFlow的模型,可以先转换为当前版本的模型,可以使用tf.compat.v1.train.Saver()代替tf.train.Saver()
    以下是示例代码:

import tensorflow as tf

#定义一个简单的模型
x = tf.placeholder(tf.float32, [None, 784])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
y = tf.matmul(x, W) + b

#定义损失函数和训练操作
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y))
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)

saver = tf.compat.v1.train.Saver()

#保存模型
with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    for i in range(1000):
        batch_xs, batch_ys = get_batch() #替换成读取数据的代码
        sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
    saver.save(sess, 'model.ckpt')

#加载模型
with tf.Session() as sess:
    saver.restore(sess, 'model.ckpt')
    print('Model loaded successfully')

以上是基本的模型参数的保存与加载的攻略过程,可以根据具体场景和要求进行优化和完善。同时需要注意版本的兼容性问题,保证模型能够成功地保存和加载。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:解决tensorflow模型参数保存和加载的问题 - Python技术站

(0)
上一篇 2023年5月18日
下一篇 2023年5月18日

相关文章

  • tensorflow学习之 Eager execution

      首先tensorflow本身就是一个声明式的编程。而不是命令式的编程。           1、声明式的编程可以简单理解为先统一列出计算形式或者是表达式,然后最终在会话中进行计算。     2、而命令式就像是python本身就是。有初始值,再写出计算式的时候,运行到这一步其实就相当于已经的除了结果。     下面我们可以用斐波那契数列举例:       …

    2023年4月7日
    00
  • 20180929 北京大学 人工智能实践:Tensorflow笔记08

    https://www.bilibili.com/video/av22530538/?p=28 —————————————————————————————————————————————————————————————————— —————————————————————————————————————————————————————————————————…

    2023年4月8日
    00
  • golang 安装tensorflow

    TF_TYPE=”cpu” # Change to “gpu” for GPU support  //设置环境变量   TARGET_DIRECTORY=’/usr/local’//设置环境变量   wget https://storage.googleapis.com/tensorflow/libtensorflow/libtensorflow-${TF_…

    tensorflow 2023年4月6日
    00
  • Win10+TensorFlow-gpu pip方式安装,anaconda方式安装

    中文官网安装教程:https://www.tensorflow.org/install/install_windows#determine_how_to_install_tensorflow 1.安装前须安装CUDA和cuDNN: cuDNN需要手动配置的环境变量: cuDNN:将C:\Program Files\cudnn-9.0-windows10-x6…

    2023年4月8日
    00
  • TensorFlow?PyTorch?Paddle?AI工具库生态之争:ONNX将一统天下

    AI诸多工具库工具库之间的切换,是一件耗时耗力的麻烦事。ONNX 即应运而生,使不同人工智能框架(如PyTorch、TensorRT、MXNet)可以采用相同格式存储模型数据并交互,极大方便了算法及模型在不同的框架之间的迁移,带来了AI生态的自由流通。… ? 作者:韩信子@ShowMeAI? 深度学习实战系列:https://www.showmeai.t…

    2023年4月8日
    00
  • tensorflow模型转ncnn模型

      ncnn本来是有tensorflow2ncnn的工具,但是在5月份时候被删除,原因是很多算子不支持,使用过程中很多bug,作者nihui直接将该功能删除。但是,tensorflow是目前最popular的深度学习框架,因此tensorflow转ncnn的需求还是必不可少的需求。下面提供一种将tensorflow转换为ncnn的一种解决方案。 感谢: ht…

    tensorflow 2023年4月8日
    00
  • Tensorflow在python3.7版本的运行

    安装tensorflow pip install tensorflow==1.13.1 -i https://pypi.tuna.tsinghua.edu.cn/simple   可以在命令行 或者在pycharm的命令行    运行第一个tensorflow代码 import tensorflow as tf # import os # os.enviro…

    2023年4月8日
    00
  • Tensorflow 模型的保存、读取和冻结、执行

    转载自https://www.jarvis73.cn/2018/04/25/Tensorflow-Model-Save-Read/ 本文假设读者已经懂得了 Tensorflow 的一些基础概念, 如果不懂, 则移步 TF 官网 . 在 Tensorflow 中我们一般使用 tf.train.Saver() 定义的存储器对象来保存模型, 并得到形如下面列表的文…

    2023年4月6日
    00
合作推广
合作推广
分享本页
返回顶部