使用Keras建立模型并训练等一系列操作方式

下面是关于“使用Keras建立模型并训练等一系列操作方式”的完整攻略。

示例1:使用Sequential模型建立模型并训练

下面是一个使用Sequential模型建立模型并训练的示例:

from keras.models import Sequential
from keras.layers import Dense
import numpy as np

# 生成数据
x_train = np.random.random((100, 1))
y_train = 2 * x_train + 1

# 定义模型
model = Sequential()
model.add(Dense(1, input_shape=(1,)))

# 编译模型
model.compile(optimizer='sgd', loss='mse')

# 训练模型
model.fit(x_train, y_train, epochs=100)

# 预测结果
x_test = np.array([[0.5]])
y_test = model.predict(x_test)
print(y_test)

在这个示例中,我们使用Sequential模型来定义一个简单的线性回归模型。我们使用随机数生成器生成100个数据点,然后使用SGD优化器和均方误差损失函数来训练模型。最后,我们使用训练好的模型来预测一个新的数据点。

示例2:使用函数式API建立模型并训练

下面是一个使用函数式API建立模型并训练的示例:

from keras.models import Model
from keras.layers import Input, Dense
import numpy as np

# 生成数据
x_train = np.random.random((100, 1))
y_train = 2 * x_train + 1

# 定义模型
inputs = Input(shape=(1,))
outputs = Dense(1)(inputs)
model = Model(inputs=inputs, outputs=outputs)

# 编译模型
model.compile(optimizer='sgd', loss='mse')

# 训练模型
model.fit(x_train, y_train, epochs=100)

# 预测结果
x_test = np.array([[0.5]])
y_test = model.predict(x_test)
print(y_test)

在这个示例中,我们使用函数式API来定义一个简单的线性回归模型。我们使用随机数生成器生成100个数据点,然后使用SGD优化器和均方误差损失函数来训练模型。最后,我们使用训练好的模型来预测一个新的数据点。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:使用Keras建立模型并训练等一系列操作方式 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • Theano+Keras+CUDA7.5+VS2013+Windows10x64配置

    Visual Studio 2013 正常安装,这里只要C++打勾就可以。 ANACONDA ANACONDA是封装了Python的科学计算工具,装这个就可以不用额外装Python了。在安装之前建议先卸载电脑里已装的Python。这里建议用对应Python 2.7的Anaconda2-2.4.0。 Anaconda3对应的Python3.x,之前用这个的时候…

    Keras 2023年4月6日
    00
  • Keras: 创建多个输入以及混合数据输入的神经网络模型

    摘要 点击此处下载源代码:https://jbox.sjtu.edu.cn/l/NHfFZu在本教程中,您将学习如何将Keras用于多输入和混合数据。 您将了解如何定义一个Keras网络结构,该网络结构能够接受多种输入,包括数字、类别和图像等多种数据。然后,我们将在混合数据上训练一个端到端的网络。 这是我们有关Keras和回归问题的三篇系列文章的最后一篇: …

    2023年4月8日
    00
  • 吴裕雄–天生自然神经网络与深度学习实战Python+Keras+TensorFlow:使用自动编解码网络实现黑白图片上色

    ”’ 加载cifar10图片集并准备将图片进行灰度化 ”’ from keras.datasets import cifar10 def rgb2gray(rgb): #把彩色图转化为灰度图,如果当前像素点为[r,g,b],那么对应的灰度点为0.299*r+0.587*g+0.114*b return np.dot(rgb[…,:3], [0.299…

    2023年4月8日
    00
  • Keras学习-1

    本文基于http://keras-cn.readthedocs.io/en/latest/for_beginners/concepts/提及的知识总结,感谢作者做出的贡献,如有侵权将立即删除 符号计算 Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都是一个“符号式”的库。…

    2023年4月8日
    00
  • Python深度学习之Unet 语义分割模型(Keras)

    下面是关于“Python深度学习之Unet 语义分割模型(Keras)”的完整攻略。 问题描述 Unet是一种用于图像分割的深度学习模型,可以用于医学图像分割、自然图像分割等领域。那么,在Python中,如何使用Keras实现Unet模型? 解决方法 以下是使用Keras实现Unet模型的方法: 首先,导入必要的库: python from keras.mo…

    Keras 2023年5月16日
    00
  • Python实战之MNIST手写数字识别详解

    下面是关于“Python实战之MNIST手写数字识别详解”的完整攻略。 Python实战之MNIST手写数字识别详解 本攻略中,将介绍如何使用Python实现MNIST手写数字识别。我们将提供两个示例来说明如何使用这个方法。 步骤1:MNIST手写数字识别介绍 首先,需要了解MNIST手写数字识别的基本概念。MNIST是一个手写数字数据集,包含60,000个…

    Keras 2023年5月15日
    00
  • 【keras】基本概念计算方法、Tensor张量、数据类型data_format、函数式模型、batch、epoch

    1、符号计算 Keras的底层库使用Theano或TensorFlow,这两个库也称为Keras的后端。无论是Theano还是TensorFlow,都是一个“符号式”的库。 符号主义的计算首先定义各种变量,然后建立一个“计算图”,计算图规定了各个变量之间的计算关系。建立好的计算图需要编译以确定其内部细节,然而,此时的计算图还是一个“空壳子”,里面没有任何实际…

    2023年4月8日
    00
  • 【Keras之父】DL用于CV

    一. 密集连接层和卷积层的根本区别是 Dense层从输入特征空间中学到的是全局模式(涉及所有像素的模式) 卷积层学到的局部模式,对图像来说学到的就是在输入图像的二维小窗口中发现的模式。 二. 卷积神经网络具有以下2个有趣的性质        1.具有平移不变性(因为视觉世界从根本上具有平移不变性)。CNN在图像某个位置学到的模式,可以在图像任何其他位置识别这…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部