Python 微信爬虫完整实例【单线程与多线程】攻略
本文介绍了如何用Python实现微信公众号文章的爬取,并提供了单线程与多线程两种实现方式,以便读者可以根据自己的需求选择适用的方法。
准备工作
在开始爬虫之前,需准备如下软件工具:
- Python 3.x
- Chrome浏览器
- Chromedriver
- requests
- bs4
- lxml
- selenium
单线程爬虫实现
- 根据微信公众平台要求,需要先通过登录公众平台获取到cookie信息,然后在每次爬取文章时将cookie信息添加到请求头中,以模拟登录状态。代码如下:
import requests
cookie_str = 'cookie信息'
# 将cookie字符串转换为字典格式
cookies = {}
for cookie in cookie_str.split(';'):
name, value = cookie.strip().split('=', 1)
cookies[name] = value
# 添加cookie到请求头
headers = {
'cookie': cookie_str
}
# 发送请求
response = requests.get(url, headers=headers, cookies=cookies)
- 解析微信公众号文章详情页的HTML页面,获取文章的标题、发布时间、阅读量、点赞量等信息。具体实现可参考以下代码:
from bs4 import BeautifulSoup
soup = BeautifulSoup(html_str, 'lxml')
# 获取文章标题
title = soup.select_one('#activity-name').get_text().strip()
# 获取文章发布时间
time_element = soup.select_one('.rich_media_meta_list .rich_media_meta_text')
time = time_element.get_text().strip() if time_element else ''
# 获取文章阅读量和点赞量
read_element = soup.select_one('#readNum3')
read_num = read_element.get_text().strip() if read_element else 0
like_element = soup.select_one('#js_name .sg_reply_area .sg_txt2')
like_num = like_element.get_text().strip() if like_element else 0
- 遍历微信公众号文章列表页,获取每篇文章的URL链接,然后通过上一步的代码,实现对每篇文章标题、发布时间、阅读量、点赞量等信息的爬取。代码如下:
from selenium import webdriver
from bs4 import BeautifulSoup
driver = webdriver.Chrome()
driver.get(url)
# 获取公众号文章列表
article_links = driver.find_elements_by_css_selector('.news_lst_mod li > div > div > a')
# 遍历文章链接
for link in article_links:
article_url = link.get_attribute('href')
response = requests.get(article_url, headers=headers, cookies=cookies)
soup = BeautifulSoup(response.text, 'lxml')
# 解析文章信息
title = soup.select_one('#activity-name').get_text().strip()
time_element = soup.select_one('.rich_media_meta_list .rich_media_meta_text')
time = time_element.get_text().strip() if time_element else ''
read_element = soup.select_one('#readNum3')
read_num = read_element.get_text().strip() if read_element else 0
like_element = soup.select_one('#js_name .sg_reply_area .sg_txt2')
like_num = like_element.get_text().strip() if like_element else 0
print(title, time, read_num, like_num)
多线程爬虫实现
在单线程爬虫的基础上,为了提高爬虫的效率,可以使用多线程技术进行优化。下面提供一个基于 Python 内置的 threading
模块实现的多线程爬虫示例:
import threading
class MyThread(threading.Thread):
def __init__(self, article_url):
threading.Thread.__init__(self)
self.article_url = article_url
def run(self):
response = requests.get(self.article_url, headers=headers, cookies=cookies)
soup = BeautifulSoup(response.text, 'lxml')
# 解析文章信息
title = soup.select_one('#activity-name').get_text().strip()
time_element = soup.select_one('.rich_media_meta_list .rich_media_meta_text')
time = time_element.get_text().strip() if time_element else ''
read_element = soup.select_one('#readNum3')
read_num = read_element.get_text().strip() if read_element else 0
like_element = soup.select_one('#js_name .sg_reply_area .sg_txt2')
like_num = like_element.get_text().strip() if like_element else 0
print(title, time, read_num, like_num)
使用多线程爬虫的步骤如下:
- 读取文章链接列表;
- 遍历文章链接列表,使用
MyThread
类创建多个线程:
python
threads = []
for article_url in article_links:
thread = MyThread(article_url)
threads.append(thread) - 启动子线程:
python
for thread in threads:
thread.start() - 调用所有子线程的
join()
方法保证所有子线程获取文章信息的时间一致,以便后续统一处理:
python
for thread in threads:
thread.join()
总结
本文详细讲解了如何使用Python实现微信公众号文章的爬取,并提供了单线程与多线程两种实现方式,读者可以根据自己的需要,选择合适的实现方式。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python 微信爬虫完整实例【单线程与多线程】 - Python技术站