pytorch如何获得模型的计算量和参数量

PyTorch如何获得模型的计算量和参数量

在深度学习中,模型的计算量和参数量是两个重要的指标,可以帮助我们评估模型的复杂度和性能。在本文中,我们将介绍如何使用PyTorch来获得模型的计算量和参数量,并提供两个示例,分别是计算卷积神经网络的计算量和参数量。

计算卷积神经网络的计算量和参数量

以下是一个示例,展示如何计算卷积神经网络的计算量和参数量。

import torch
import torch.nn as nn

class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1)
        self.conv2 = nn.Conv2d(64, 128, kernel_size=3, stride=1, padding=1)
        self.conv3 = nn.Conv2d(128, 256, kernel_size=3, stride=1, padding=1)
        self.fc1 = nn.Linear(256 * 4 * 4, 1024)
        self.fc2 = nn.Linear(1024, 10)

    def forward(self, x):
        x = nn.functional.relu(self.conv1(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv2(x))
        x = nn.functional.max_pool2d(x, 2)
        x = nn.functional.relu(self.conv3(x))
        x = nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 256 * 4 * 4)
        x = nn.functional.relu(self.fc1(x))
        x = self.fc2(x)
        return x

model = Net()

params = sum(p.numel() for p in model.parameters())
print(f'Number of parameters: {params}')

flops = torch.randn(1, 3, 32, 32)
flops = model(flops)
flops = int(2 * params * flops.size(0))
print(f'Number of FLOPs: {flops}')

在这个示例中,我们定义了一个简单的卷积神经网络模型,并使用sum(p.numel() for p in model.parameters())来计算模型的参数量。在计算模型的计算量时,我们首先生成一个随机的输入张量,并将其传递给模型。我们使用flops.size(0)来获取批量大小,并使用2 * params * flops.size(0)来计算模型的计算量。最后,我们打印出模型的参数量和计算量。

计算ResNet的计算量和参数量

以下是一个示例,展示如何计算ResNet的计算量和参数量。

import torch
import torch.nn as nn

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, in_planes, planes, stride=1):
        super(BasicBlock, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)

        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion*planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_planes, self.expansion*planes, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(self.expansion*planes)
            )

    def forward(self, x):
        out = nn.functional.relu(self.bn1(self.conv1(x)))
        out = self.bn2(self.conv2(out))
        out += self.shortcut(x)
        out = nn.functional.relu(out)
        return out

class ResNet(nn.Module):
    def __init__(self, block, num_blocks, num_classes=10):
        super(ResNet, self).__init__()
        self.in_planes = 64

        self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.layer1 = self._make_layer(block, 64, num_blocks[0], stride=1)
        self.layer2 = self._make_layer(block, 128, num_blocks[1], stride=2)
        self.layer3 = self._make_layer(block, 256, num_blocks[2], stride=2)
        self.layer4 = self._make_layer(block, 512, num_blocks[3], stride=2)
        self.linear = nn.Linear(512*block.expansion, num_classes)

    def _make_layer(self, block, planes, num_blocks, stride):
        strides = [stride] + [1]*(num_blocks-1)
        layers = []
        for stride in strides:
            layers.append(block(self.in_planes, planes, stride))
            self.in_planes = planes * block.expansion
        return nn.Sequential(*layers)

    def forward(self, x):
        out = nn.functional.relu(self.bn1(self.conv1(x)))
        out = self.layer1(out)
        out = self.layer2(out)
        out = self.layer3(out)
        out = self.layer4(out)
        out = nn.functional.avg_pool2d(out, 4)
        out = out.view(out.size(0), -1)
        out = self.linear(out)
        return out

def ResNet18():
    return ResNet(BasicBlock, [2,2,2,2])

model = ResNet18()

params = sum(p.numel() for p in model.parameters())
print(f'Number of parameters: {params}')

flops = torch.randn(1, 3, 32, 32)
flops = model(flops)
flops = int(2 * params * flops.size(0))
print(f'Number of FLOPs: {flops}')

在这个示例中,我们定义了一个ResNet18模型,并使用sum(p.numel() for p in model.parameters())来计算模型的参数量。在计算模型的计算量时,我们首先生成一个随机的输入张量,并将其传递给模型。我们使用flops.size(0)来获取批量大小,并使用2 * params * flops.size(0)来计算模型的计算量。最后,我们打印出模型的参数量和计算量。

总结

本文介绍了如何使用PyTorch来获得模型的计算量和参数量,并提供了两个示例,分别是计算卷积神经网络的计算量和参数量以及计算ResNet的计算量和参数量。在实现过程中,我们使用了PyTorch和其他些库,并介绍了一些常用的函数和技术。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch如何获得模型的计算量和参数量 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • pytorch1.0进行Optimizer 优化器对比

     pytorch1.0进行Optimizer 优化器对比 import torch import torch.utils.data as Data # Torch 中提供了一种帮助整理数据结构的工具, 叫做 DataLoader, 能用它来包装自己的数据, 进行批训练. import torch.nn.functional as F # 包含激励函数 imp…

    2023年4月6日
    00
  • Pytorch优化过程展示:tensorboard

    训练模型过程中,经常需要追踪一些性能指标的变化情况,以便了解模型的实时动态,例如:回归任务中的MSE、分类任务中的Accuracy、生成对抗网络中的图片、网络模型结构可视化…… 除了追踪外,我们还希望能够将这些指标以动态图表的形式可视化显示出来。 TensorFlow的附加工具Tensorboard就完美的提供了这些功能。不过现在经过Pytorch团队的努力…

    2023年4月6日
    00
  • Linux环境下GPU版本的pytorch安装

    在Linux环境下安装GPU版本的PyTorch需要以下步骤: 安装CUDA和cuDNN 首先需要安装CUDA和cuDNN,这是GPU版本PyTorch的基础。可以从NVIDIA官网下载对应版本的CUDA和cuDNN,也可以使用包管理器进行安装。 安装Anaconda 建议使用Anaconda进行Python环境管理。可以从Anaconda官网下载对应版本的…

    PyTorch 2023年5月15日
    00
  • [PyTorch 学习笔记] 2.2 图片预处理 transforms 模块机制

    我们在安装PyTorch时,还安装了torchvision,这是一个计算机视觉工具包。有 3 个主要的模块: torchvision.transforms: 里面包括常用的图像预处理方法 torchvision.datasets: 里面包括常用数据集如 mnist、CIFAR-10、Image-Net 等 torchvision.models: 里面包括常用…

    2023年4月6日
    00
  • 使用pytorch测试单张图片(test single image with pytorch)

    以下代码实现使用pytorch测试一张图片 引用文章: https://www.learnopencv.com/pytorch-for-beginners-image-classification-using-pre-trained-models/ from __future__ import print_function, division from PI…

    PyTorch 2023年4月7日
    00
  • Pytorch入门之VAE

    关于自编码器的原理见另一篇博客 : 编码器AE & VAE 这里谈谈对于变分自编码器(Variational auto-encoder)即VAE的实现。   1. 稀疏编码 首先介绍一下“稀疏编码”这一概念。        早期学者在黑白风景照片中可以提取到许多16*16像素的图像碎片。而这些图像碎片几乎都可由64种正交的边组合得到。而且组合出一张碎…

    2023年4月8日
    00
  • pytorch分类模型绘制混淆矩阵以及可视化详解

    以下是关于“pytorch分类模型绘制混淆矩阵以及可视化详解”的完整攻略,其中包含两个示例说明。 示例1:绘制混淆矩阵 步骤1:导入必要的库 在绘制混淆矩阵之前,我们需要导入一些必要的库,包括numpy、matplotlib和sklearn。 import numpy as np import matplotlib.pyplot as plt from sk…

    PyTorch 2023年5月16日
    00
  • 深度学习训练过程中的学习率衰减策略及pytorch实现

    学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛。 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现。 1. StepLR 按固定的训练epoch数进行学习率衰减。 举例说明: # lr = 0.05 if epoch < 30 # lr = 0.005 if 30 <= epoch &lt…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部