pandas数据分组和聚合操作方法

下面是关于“pandas数据分组和聚合操作方法”的完整攻略。

1. 前置基础知识

在进行数据分组和聚合操作前,我们需要掌握以下基础知识:

  1. pandas的数据结构Series和DataFrame;
  2. pandas中的GroupBy对象,用于进行数据分组操作;
  3. 聚合操作中的常用函数,包括sum、mean、count等;
  4. apply方法的使用,可以对数据进行自定义操作。

2. 数据分组

pandas中的数据分组可以使用GroupBy对象,GroupBy对象的创建可以通过对DataFrame进行groupby方法调用实现。groupby方法的参数包括要分组的列或多列的名称。

import pandas as pd

data = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                     'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                     'C': [1, 2, 3, 4, 5, 6, 7, 8],
                     'D': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]})

grouped = data.groupby('A')  # 按照A列进行分组

for key, value in grouped:
    print(key)
    print(value)

以上代码中,创建了一个DataFrame和一个GroupBy对象,按照A列进行分组,将DataFrame按照A列中不同的值划分为foo和bar两个组,for循环遍历每个组的名称和对应的数据。

3. 聚合操作

分组完成后,可以进行聚合操作,pandas支持的聚合操作包括sum、mean、count等,对应着分别对数据求和、求均值和计数等操作。

import pandas as pd

data = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                     'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                     'C': [1, 2, 3, 4, 5, 6, 7, 8],
                     'D': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]})

grouped = data.groupby('A')  # 按照A列进行分组

result = grouped.sum()  # 对每组的数值列求和

print(result)

以上代码中,通过groupby方法对DataFrame进行分组(按照A列),然后使用sum方法对每组的数值列求和,获得了每个分组的总和。

4. 自定义聚合操作

pandas还支持自定义聚合函数,可以使用apply方法对每个分组进行自定义操作。apply方法接受一个函数作为参数,该函数的输入是每个分组的数据,输出是聚合后的结果。

import pandas as pd

def my_func(data):
    return data['C'].sum() / data['D'].mean()

data = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar', 'foo', 'foo'],
                     'B': ['one', 'one', 'two', 'three', 'two', 'two', 'one', 'three'],
                     'C': [1, 2, 3, 4, 5, 6, 7, 8],
                     'D': [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8]})

grouped = data.groupby('A')  # 按照A列进行分组

result = grouped.apply(my_func)  # 对每组数据执行自定义操作

print(result)

以上代码中,定义了一个自定义函数my_func,对每个组的数据进行自定义操作。apply方法将这个函数作为参数输入,对每组数据执行自定义操作,并返回操作后的结果。

5. 示例说明

为了更好地理解分组和聚合操作的实现和意义,下面给出两个示例说明。

示例1

我们有一份销售数据的DataFrame,包括日期、销售量、类别等信息。我们希望按照不同类别的销售量总和进行排序。

import pandas as pd

data = pd.DataFrame({'date': ['2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04', '2022-01-05', '2022-01-01', '2022-01-02', '2022-01-03', '2022-01-04', '2022-01-05'],
                     'category': ['fruit', 'vege', 'meat', 'fruit', 'vege', 'meat', 'fruit', 'vege', 'meat', 'fruit'],
                     'sales': [100, 150, 200, 120, 180, 230, 110, 170, 190, 130]})

grouped = data.groupby('category')

result = grouped.sum().sort_values('sales', ascending=False)

print(result)

以上代码中,使用groupby方法将DataFrame按照类别列进行分组,然后对每组数据的销售量列进行求和操作,最后按照销售量降序排列输出结果。

示例2

我们有一组学生成绩数据,包括每个学生的姓名、科目和成绩等信息。我们希望纵向统计每个学生的成绩平均值,并按照平均值进行降序排列。

import pandas as pd

data = pd.DataFrame({'name': ['Tom', 'Jack', 'Tom', 'Tom', 'Jack', 'Lucy', 'Lucy', 'Lucy'],
                     'subject': ['math', 'math', 'math', 'English', 'English', 'math', 'English', 'math'],
                     'score': [80, 90, 70, 85, 92, 88, 82, 91]})

grouped = data.groupby('name')

result = grouped.mean().sort_values('score', ascending=False)

print(result)

以上代码中,使用groupby方法将DataFrame按照姓名列进行分组,然后对每个分组中的成绩列进行平均值操作,最后按照平均值降序排列输出结果。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pandas数据分组和聚合操作方法 - Python技术站

(1)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • python时间日期函数与利用pandas进行时间序列处理详解

    Python时间日期函数与利用Pandas进行时间序列处理攻略 简介 时间和日期在编程中是一个非常重要的概念,特别是涉及到实时数据和对数据进行时间序列分析时。 Python提供了丰富的时间和日期函数,这个攻略将深入介绍Python的时间和日期函数,并说明如何使用Pandas进行时间序列处理。 时间和日期表示 在Python中,时间和日期都可以使用dateti…

    python 2023年5月14日
    00
  • 在Python中找出是某个数字的倍数的位置

    在Python中找出某个数字的倍数的位置可以通过以下步骤实现: 创建一个空数组或列表,用于存储找到的位置 遍历原始数组或列表,判断每个数是否为目标数字的倍数 如果是目标数字的倍数,将该数的位置添加到第1步中创建的数组或列表中 返回第1步中创建的数组或列表,其中存储的是目标数字的倍数位置 下面是一个使用 Python 代码示例的完整攻略: # 定义原始数组 n…

    python-answer 2023年3月27日
    00
  • 在Python Pandas中查找某一列的指数

    在Python Pandas中,可以使用DataFrame的columns属性来找到列名,然后使用get_loc方法来查找列的索引值(也就是指数)。 具体步骤如下: 首先,导入pandas模块并创建一个示例DataFrame,如下所示: import pandas as pd df = pd.DataFrame({ ‘Name’: [‘Alice’, ‘Bo…

    python-answer 2023年3月27日
    00
  • 教你使用Python根据模板批量生成docx文档

    教你使用Python根据模板批量生成docx文档 简介 docx是Microsoft Word的文档格式,使用Python可以根据给定模板批量生成docx文档。本文将会介绍如何使用Python进行docx文件的自动化生成。 安装所需模块 在进行下一步之前,需要安装以下模块: docx:处理docx文件格式的Python库。可通过这个链接进行安装。 pip i…

    python 2023年6月14日
    00
  • 使用数据模式模块识别数据框架中的模式

    在数据分析和机器学习中,模式识别是一个重要的任务。数据模式模块是一种可用于识别数据框架中的模式的Python库。以下是使用数据模式模块识别数据框架中的模式的详细说明: 安装 首先,需要安装数据模块模块。可以使用pip命令进行安装: pip install datamodules 加载数据 现在,让我们准备一些数据,用于说明如何使用数据模式模块进行模式识别。假…

    python-answer 2023年3月27日
    00
  • 基于两列的Pandas数据框架中删除重复的内容

    基于两列的Pandas数据框架中删除重复的内容的攻略如下所述: 首先导入必要的库,创建示例数据: import pandas as pd df = pd.DataFrame({ ‘col1’: [‘A’, ‘B’, ‘C’, ‘D’, ‘E’], ‘col2’: [‘W’, ‘X’, ‘X’, ‘Y’, ‘Z’] }) 其中,col1和col2分别代表两个列…

    python-answer 2023年3月27日
    00
  • Pandas处理缺失值的4种方法

    什么是缺失值 在实际数据分析过程中,经常会遇到一些数据缺失的情况,这种情况可能是由于以下原因导致的: 数据收集的不完整:有些数据可能由于各种原因无法获取或者未收集到。 数据输入错误:数据收集者可能会犯一些输入错误,例如遗漏一些数据或者输入了一些不正确的数据。 数据处理错误:数据处理过程中可能会犯一些错误,例如计算错误或者数据合并错误等。 数据保存错误:数据保…

    Pandas 2023年3月5日
    00
  • pytorch中关于backward的几个要点说明

    当我们使用pytorch构建神经网络模型时,我们需要对模型直接或间接定义的预测函数进行梯度计算,以便可以通过梯度下降算法来更新模型参数。而在pytorch中,backward()是用于计算梯度的函数。以下是在使用pytorch中关于backward的几个要点说明: 1.基础概念 backward()函数是从计算图中的叶子节点(也就是输入节点)开始沿着梯度方向…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部