下面是详细讲解“python实现人工蜂群算法”的完整攻略,包含两个示例说明。
人工蜂群算法简介
人工蜂群算法(Artificial Bee Colony,ABC)是一种基于蜜蜂觅食行为的优化算法。在ABC算法中,蜜蜂分为三种角色:雇佣蜜蜂、侦查蜜蜂和观察蜜蜂。雇佣蜜蜂和侦查蜜蜂负责搜索解空间,观察蜜蜂负责评估解的质量。ABC算法的优点是易于实现,收敛速度快,适用于多维优化问题。
Python实现人工蜂群算法
下面是Python实现人工蜂群算法的代码:
import random
import numpy as np
class ABC:
def __init__(self, func, n_employed, n_onlooker, n_dim, lb, ub, max_iter):
self.func = func
self.n_employed = n_employed
self.n_onlooker = n_onlooker
self.n_dim = n_dim
self.lb = lb
self.ub = ub
self.max_iter = max_iter
self.best_solution = None
self.best_fitness = np.inf
self.employed_bees = []
self.onlooker_bees = []
self.scout_bees = []
for i in range(self.n_employed):
solution = np.random.uniform(self.lb, self.ub, self.n_dim)
fitness = self.func(solution)
self.employed_bees.append((solution, fitness))
def employed_bee_phase(self):
for i in range(self.n_employed):
solution, fitness = self.employed_bees[i]
j = random.randint(0, self.n_dim - 1)
k = random.randint(0, self.n_employed - 1)
while k == i:
k = random.randint(0, self.n_employed - 1)
x = solution.copy()
x[j] = self.employed_bees[k][0][j]
new_fitness = self.func(x)
if new_fitness < fitness:
self.employed_bees[i] = (x, new_fitness)
if new_fitness < self.best_fitness:
self.best_solution = x
self.best_fitness = new_fitness
def onlooker_bee_phase(self):
fitness_sum = sum([bee[1] for bee in self.employed_bees])
probabilities = [bee[1] / fitness_sum for bee in self.employed_bees]
for i in range(self.n_onlooker):
j = self.select_bee(probabilities)
solution, fitness = self.employed_bees[j]
k = random.randint(0, self.n_dim - 1)
x = solution.copy()
x[k] = np.random.uniform(self.lb, self.ub)
new_fitness = self.func(x)
if new_fitness < fitness:
self.employed_bees[j] = (x, new_fitness)
if new_fitness < self.best_fitness:
self.best_solution = x
self.best_fitness = new_fitness
def scout_bee_phase(self):
for i in range(self.n_employed):
if self.employed_bees[i][1] > self.best_fitness:
solution = np.random.uniform(self.lb, self.ub, self.n_dim)
fitness = self.func(solution)
self.employed_bees[i] = (solution, fitness)
def select_bee(self, probabilities):
r = np.random.uniform(0, 1)
for i in range(len(probabilities)):
if r < probabilities[i]:
return i
r -= probabilities[i]
def optimize(self):
for i in range(self.max_iter):
self.employed_bee_phase()
self.onlooker_bee_phase()
self.scout_bee_phase()
return self.best_solution, self.best_fitness
这个代码实现了ABC算法的优化过程。在这个代码中,我们首先初始化蜜蜂群体,然后进行雇佣蜜蜂、侦查蜜蜂和观察蜜蜂三个阶段的优化。最后,我们返回最解和最优解适应度。
示例1:使用ABC算法求解函数最小值
让我们使用ABC算法求解函数最小值。我们将使用以下代码:
import numpy as np
from abc import ABC
def sphere(x):
return sum(x ** 2)
abc = ABC(sphere, n_employed=20, n_onlooker=20, n_dim=10, lb=-5.12, ub=5.12, max_iter=1000)
best_solution, best_fitness = abc.optimize()
print('Best solution:', best_solution)
print('Best fitness:', best_fitness)
这个代码使用ABC算法求解函数最小值。我们首先定义了一个函数sphere,然后使用ABC算法进行优化。最后,我们输出最优解和最优解的适应度。
示例2:使用ABC算法求解旅行商问题
让我们使用ABC算法求解旅行商问题。我们将使用以下代码:
import numpy as np
from abc import ABC
def tsp_distance(x, y):
return np.sqrt((x[0] - y[0]) ** 2 + (x[1] - y[1]) ** 2)
def tsp_fitness(solution, cities):
distance = 0
for i in range(len(solution) - 1):
distance += tsp_distance(cities[solution[i]], cities[solution[i + 1]])
distance += tsp_distance(cities[solution[-1]], cities[solution[0]])
return distance
def tsp(n_cities):
cities = np.random.uniform(0, 1, (n_cities, 2))
def func(solution):
return tsp_fitness(solution, cities)
abc = ABC(func, n_employed=20, n_onlooker=20, n_dim=n_cities, lb=0, ub=n_cities, max_iter=1000)
best_solution, best_fitness = abc.optimize()
return best_solution, best_fitness
best_solution, best_fitness = tsp(10)
print('Best solution:', best_solution)
print('Best fitness:', best_fitness)
这个代码使用ABC算法求解旅行商问题。我们首先定义了一个函数tsp_distance用于计算两个城市之间的距离,然后定义一个函数tsp_fitness用于计算旅行商问题的适应度。最后,我们使用ABC算法进行优化,并输出最优解和最优解的适应度。
希望这个攻略能帮助你理解如何使用Python实现人工蜂群算法!
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python实现人工蜂群算法 - Python技术站