1、知识点
""" 验证码分析: 对图片进行分析: 1、分割识别 2、整体识别 输出:[3,5,7] -->softmax转为概率[0.04,0.16,0.8] ---> 交叉熵计算损失值 (目标值和预测值的对数) tf.argmax(预测值,2)
验证码样例:[NAZP] [XCVB] [WEFW] ,都是字母的 """
2、将数据写入TFRecords
import tensorflow as tf import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_string("tfrecords_dir", "./tfrecords/captcha.tfrecords", "验证码tfrecords文件") tf.app.flags.DEFINE_string("captcha_dir", "../data/Genpics/", "验证码图片路径") tf.app.flags.DEFINE_string("letter", "ABCDEFGHIJKLMNOPQRSTUVWXYZ", "验证码字符的种类") def dealwithlabel(label_str): # 构建字符索引 {0:'A', 1:'B'......} num_letter = dict(enumerate(list(FLAGS.letter))) # 键值对反转 {'A':0, 'B':1......} letter_num = dict(zip(num_letter.values(), num_letter.keys())) print(letter_num) # 构建标签的列表 array = [] # 给标签数据进行处理[[b"NZPP"]......] for string in label_str: letter_list = []# [1,2,3,4] # 修改编码,b'FVQJ'到字符串,并且循环找到每张验证码的字符对应的数字标记 for letter in string.decode('utf-8'): letter_list.append(letter_num[letter]) array.append(letter_list) # [[13, 25, 15, 15], [22, 10, 7, 10], [22, 15, 18, 9], [16, 6, 13, 10], [1, 0, 8, 17], [0, 9, 24, 14].....] print(array) # 将array转换成tensor类型 label = tf.constant(array) return label def get_captcha_image(): """ 获取验证码图片数据 :param file_list: 路径+文件名列表 :return: image """ # 构造文件名 filename = [] for i in range(6000): string = str(i) + ".jpg" filename.append(string) # 构造路径+文件 file_list = [os.path.join(FLAGS.captcha_dir, file) for file in filename] # 构造文件队列 file_queue = tf.train.string_input_producer(file_list, shuffle=False) # 构造阅读器 reader = tf.WholeFileReader() # 读取图片数据内容 key, value = reader.read(file_queue) # 解码图片数据 image = tf.image.decode_jpeg(value) image.set_shape([20, 80, 3]) # 批处理数据 [6000, 20, 80, 3] image_batch = tf.train.batch([image], batch_size=6000, num_threads=1, capacity=6000) return image_batch def get_captcha_label(): """ 读取验证码图片标签数据 :return: label """ file_queue = tf.train.string_input_producer(["../data/Genpics/labels.csv"], shuffle=False) reader = tf.TextLineReader() key, value = reader.read(file_queue) records = [[1], ["None"]] number, label = tf.decode_csv(value, record_defaults=records) # [["NZPP"], ["WKHK"], ["ASDY"]] label_batch = tf.train.batch([label], batch_size=6000, num_threads=1, capacity=6000) return label_batch def write_to_tfrecords(image_batch, label_batch): """ 将图片内容和标签写入到tfrecords文件当中 :param image_batch: 特征值 :param label_batch: 标签纸 :return: None """ # 转换类型 label_batch = tf.cast(label_batch, tf.uint8) print(label_batch) # 建立TFRecords 存储器 writer = tf.python_io.TFRecordWriter(FLAGS.tfrecords_dir) # 循环将每一个图片上的数据构造example协议块,序列化后写入 for i in range(6000): # 取出第i个图片数据,转换相应类型,图片的特征值要转换成字符串形式 image_string = image_batch[i].eval().tostring() # 标签值,转换成整型 label_string = label_batch[i].eval().tostring() # 构造协议块 example = tf.train.Example(features=tf.train.Features(feature={ "image": tf.train.Feature(bytes_list=tf.train.BytesList(value=[image_string])), "label": tf.train.Feature(bytes_list=tf.train.BytesList(value=[label_string])) })) writer.write(example.SerializeToString()) # 关闭文件 writer.close() return None if __name__ == "__main__": # 获取验证码文件当中的图片 image_batch = get_captcha_image() # 获取验证码文件当中的标签数据 label = get_captcha_label() print(image_batch, label) with tf.Session() as sess: coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=sess, coord=coord) # [b'NZPP' b'WKHK' b'WPSJ' ..., b'FVQJ' b'BQYA' b'BCHR'] label_str = sess.run(label) print(label_str) # 处理字符串标签到数字张量 label_batch = dealwithlabel(label_str) print(label_batch) # 将图片数据和内容写入到tfrecords文件当中 write_to_tfrecords(image_batch, label_batch) coord.request_stop() coord.join(threads)
View Code
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:tensorflow实现验证码识别案例 - Python技术站