一、构建自己的数据集
1、格式必须为jpg、jpeg或png。
2、在models/research/object_detection文件夹下创建images文件夹,在images文件夹下创建train和val两个文件夹,分别存放训练集图片和测试集图片。
3、下载labelImg目标检测标注工具
(1)下载地址:https://github.com/tzutalin/labelImg
(2)由于LabelImg是用Python编写的,并使用Qt作为其图形界面。
因此,python2安装qt4:
sudo apt-get install pyqt4-dev-tools
python3安装qt5:
sudo apt-get install pyqt5-dev-tools
(3)安装lxml
sudo apt-get install python-lxml
(4)解压,进入LabelImg-master文件夹,使用make编译
cd labelImg-master make all
(5)打开LabelImg
python labelImg.py
(6)使用LabelImg
- 使用Ctrl + u分别加载models/research/object_detection/images中train和val两个文件夹里的图像。
- 使用Ctrl + r选择xml文件保存的地址,对应地选择保存在train和val文件夹即可。
- 使用w创建一个矩形框,标注完一张图片中的所有物体后,Ctrl + s保存即可生成该图片对应的xml文件。
4、创建xml_to_csv.py并运行
分别将train和val文件夹下的xml文件生成对应的csv文件,并将csv文件拷贝到models/research/object_detection/data中。
xml_to_csv.py如下,以train为例。
import os import glob import pandas as pd import xml.etree.ElementTree as ET pathStr = r'/home/somnus/boat/train' os.chdir(pathStr) def xml_to_csv(path): xml_list = [] for xml_file in glob.glob(path + '/*.xml'): tree = ET.parse(xml_file) root = tree.getroot() for member in root.findall('object'): value = (root.find('filename').text, int(root.find('size').find('width').text), int(root.find('size').find('height').text), member.find('name').text, int(member.find('bndbox').find('xmin').text), int(member.find('bndbox').find('ymin').text), int(member.find('bndbox').find('xmax').text), int(member.find('bndbox').find('ymax').text) ) xml_list.append(value) column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax'] xml_df = pd.DataFrame(xml_list, columns=column_name) return xml_df def main(): #image_path = os.path.join(os.getcwd(), 'annotations') image_path = pathStr xml_df = xml_to_csv(image_path) xml_df.to_csv('boat_train.csv', index=None) print('Successfully converted xml to csv.') main()
5、创建generate_tfrecord.py并运行,以train为例,从而生成对应的TFrecord数据文件。
""" Usage: # From tensorflow/models/ # Create train data: python generate_tfrecord.py --csv_input=data/train_labels.csv --output_path=train.record # Create test data: python generate_tfrecord.py --csv_input=data/test_labels.csv --output_path=test.record """ from __future__ import division from __future__ import print_function from __future__ import absolute_import import os import io import pandas as pd import tensorflow as tf from PIL import Image from object_detection.utils import dataset_util from collections import namedtuple, OrderedDict #########根据需要修改路径 os.chdir('/home/somnus/models/research/object_detection') flags = tf.app.flags flags.DEFINE_string('csv_input', '', 'Path to the CSV input') flags.DEFINE_string('output_path', '', 'Path to output TFRecord') flags.DEFINE_string('image_dir', '', 'Path to images') FLAGS = flags.FLAGS ####根据需要修改标签 def class_text_to_int(row_label): if row_label == 'car': return 1 else: None def split(df, group): data = namedtuple('data', ['filename', 'object']) gb = df.groupby(group) return [data(filename, gb.get_group(x)) for filename, x in zip(gb.groups.keys(), gb.groups)] def create_tf_example(group, path): with tf.gfile.GFile(os.path.join(path, '{}'.format(group.filename)), 'rb') as fid: encoded_jpg = fid.read() encoded_jpg_io = io.BytesIO(encoded_jpg) image = Image.open(encoded_jpg_io) width, height = image.size filename = group.filename.encode('utf8') image_format = b'jpg' xmins = [] xmaxs = [] ymins = [] ymaxs = [] classes_text = [] classes = [] for index, row in group.object.iterrows(): xmins.append(row['xmin'] / width) xmaxs.append(row['xmax'] / width) ymins.append(row['ymin'] / height) ymaxs.append(row['ymax'] / height) classes_text.append(row['class'].encode('utf8')) classes.append(class_text_to_int(row['class'])) tf_example = tf.train.Example(features=tf.train.Features(feature={ 'image/height': dataset_util.int64_feature(height), 'image/width': dataset_util.int64_feature(width), 'image/filename': dataset_util.bytes_feature(filename), 'image/source_id': dataset_util.bytes_feature(filename), 'image/encoded': dataset_util.bytes_feature(encoded_jpg), 'image/format': dataset_util.bytes_feature(image_format), 'image/object/bbox/xmin': dataset_util.float_list_feature(xmins), 'image/object/bbox/xmax': dataset_util.float_list_feature(xmaxs), 'image/object/bbox/ymin': dataset_util.float_list_feature(ymins), 'image/object/bbox/ymax': dataset_util.float_list_feature(ymaxs), 'image/object/class/text': dataset_util.bytes_list_feature(classes_text), 'image/object/class/label': dataset_util.int64_list_feature(classes), })) return tf_example def main(_): writer = tf.python_io.TFRecordWriter(FLAGS.output_path) #####根据需要修改训练集或测试集图片路径 path = os.path.join('images/train') examples = pd.read_csv(FLAGS.csv_input) grouped = split(examples, 'filename') for group in grouped: tf_example = create_tf_example(group, path) writer.write(tf_example.SerializeToString()) writer.close() output_path = os.path.join(os.getcwd(), FLAGS.output_path) print('Successfully created the TFRecords: {}'.format(output_path)) if __name__ == '__main__': tf.app.run()
运行generate_tfrecord.py
python generate_tfrecord.py --csv_input=data/car_train.csv --output_path=data/car_train.record python generate_tfrecord.py --csv_input=data/car_val.csv --output_path=data/car_val.record
二、准备配置文件
1、在models/research/object_detection/data文件夹下创建mymodel_label_map.pbtxt文件,可以模仿pet_label_map.pbtxt,内容修改为自己模型识别的标签,从1开始编号。
item { id: 1 name: 'car' }
2、在object_detection下创建training文件夹,在models/research/object_detection/samples/configs中找到需要的模型文件,并拷贝到training文件夹下,以ssd_mobilenet_v1_coco.config为例。
model { ssd { #根据需要修改训练的数据类数 num_classes: 1 box_coder { faster_rcnn_box_coder { y_scale: 10.0 x_scale: 10.0 height_scale: 5.0 width_scale: 5.0 } } matcher { argmax_matcher { matched_threshold: 0.5 unmatched_threshold: 0.5 ignore_thresholds: false negatives_lower_than_unmatched: true force_match_for_each_row: true } } similarity_calculator { iou_similarity { } } anchor_generator { ssd_anchor_generator { num_layers: 6 min_scale: 0.2 max_scale: 0.95 aspect_ratios: 1.0 aspect_ratios: 2.0 aspect_ratios: 0.5 aspect_ratios: 3.0 aspect_ratios: 0.3333 } } image_resizer { fixed_shape_resizer { height: 300 width: 300 } } box_predictor { convolutional_box_predictor { min_depth: 0 max_depth: 0 num_layers_before_predictor: 0 use_dropout: false dropout_keep_probability: 0.8 kernel_size: 1 box_code_size: 4 apply_sigmoid_to_scores: false conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } } feature_extractor { type: 'ssd_mobilenet_v1' min_depth: 16 depth_multiplier: 1.0 conv_hyperparams { activation: RELU_6, regularizer { l2_regularizer { weight: 0.00004 } } initializer { truncated_normal_initializer { stddev: 0.03 mean: 0.0 } } batch_norm { train: true, scale: true, center: true, decay: 0.9997, epsilon: 0.001, } } } loss { classification_loss { weighted_sigmoid { } } localization_loss { weighted_smooth_l1 { } } hard_example_miner { num_hard_examples: 3000 iou_threshold: 0.99 loss_type: CLASSIFICATION max_negatives_per_positive: 3 min_negatives_per_image: 0 } classification_weight: 1.0 localization_weight: 1.0 } normalize_loss_by_num_matches: true post_processing { batch_non_max_suppression { score_threshold: 1e-8 iou_threshold: 0.6 max_detections_per_class: 100 max_total_detections: 100 } score_converter: SIGMOID } } } train_config: { #根据需要修改训练批次 batch_size: 24 optimizer { rms_prop_optimizer: { learning_rate: { exponential_decay_learning_rate { initial_learning_rate: 0.004 decay_steps: 800720 decay_factor: 0.95 } } momentum_optimizer_value: 0.9 decay: 0.9 epsilon: 1.0 } } #这两行注释 #fine_tune_checkpoint: "PATH_TO_BE_CONFIGURED/model.ckpt" #from_detection_checkpoint: true # Note: The below line limits the training process to 200K steps, which we # empirically found to be sufficient enough to train the pets dataset. This # effectively bypasses the learning rate schedule (the learning rate will # never decay). Remove the below line to train indefinitely. num_steps: 200000 data_augmentation_options { random_horizontal_flip { } } data_augmentation_options { ssd_random_crop { } } } train_input_reader: { tf_record_input_reader { #修改路径 input_path: "data/car_train.record" } #修改路径 label_map_path: "data/mymodel_label_map.pbtxt" } eval_config: { num_examples: 200 # Note: The below line limits the evaluation process to 10 evaluations. # Remove the below line to evaluate indefinitely. max_evals: 10 } eval_input_reader: { tf_record_input_reader { #修改路径 input_path: "data/car_val.record" } #修改路径 label_map_path: "data/mymodel_label_map.pbtxt" shuffle: false num_readers: 1 }
3、在models/research/object_detection下运行
python ./legacy/train.py --logtostderr --train_dir=training/ --pipeline_config_path=training/ssd_mobilenet_v1_coco.config
三、生成可被调用的模型
python export_inference_graph.py --input_type image_tensor --pipeline_config_path training/ssd_mobilenet_v1_coco.config --trained_checkpoint_prefix training/model.ckpt-8004 --output_directory car_inference_graph
其中,model.ckpt-后面的数字可以看training文件夹下的文件,选个最大的数字;--output_directory=指定的是模型生成的文件夹名字,可根据需要修改。
参考
https://www.cnblogs.com/raorao1994/p/8854941.html
https://www.smwenku.com/a/5b898fc42b71775d1ce27004/zh-cn/
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:ubuntu16.04 使用tensorflow object detection训练自己的模型 - Python技术站