Pytorch 搭建分类回归神经网络并用GPU进行加速的例子

PyTorch搭建分类回归神经网络并用GPU进行加速的例子

在本文中,我们将介绍如何使用PyTorch搭建分类回归神经网络,并使用GPU进行加速。本文将包含两个示例说明。

示例一:使用PyTorch搭建分类神经网络

我们可以使用PyTorch搭建分类神经网络。示例代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms

# 定义超参数
num_epochs = 5
batch_size = 4
learning_rate = 0.001

# 加载数据集
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

net = Net()

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=learning_rate, momentum=0.9)

# 训练模型
for epoch in range(num_epochs):
    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        optimizer.zero_grad()
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        running_loss += loss.item()
        if i % 2000 == 1999:
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 测试模型
correct = 0
total = 0
with torch.no_grad():
    for data in testloader:
        images, labels = data
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

print('Accuracy of the network on the 10000 test images: %d %%' % (
    100 * correct / total))

在上述代码中,我们首先加载了CIFAR10数据集,并定义了一个分类神经网络Net。然后,我们定义了损失函数和优化器,并使用训练集训练模型。最后,我们使用测试集测试模型的准确率。

示例二:使用PyTorch搭建回归神经网络

除了分类神经网络,我们还可以使用PyTorch搭建回归神经网络。示例代码如下:

import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import matplotlib.pyplot as plt

# 创建数据集
x_train = np.array([[3.3], [4.4], [5.5], [6.71], [6.93], [4.168], [9.779], [6.182], [7.59], [2.167], [7.042], [10.791], [5.313], [7.997], [3.1]], dtype=np.float32)
y_train = np.array([[1.7], [2.76], [2.09], [3.19], [1.694], [1.573], [3.366], [2.596], [2.53], [1.221], [2.827], [3.465], [1.65], [2.904], [1.3]], dtype=np.float32)

# 转换为张量
x_train = torch.from_numpy(x_train)
y_train = torch.from_numpy(y_train)

# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.fc1 = nn.Linear(1, 10)
        self.fc2 = nn.Linear(10, 1)

    def forward(self, x):
        x = torch.relu(self.fc1(x))
        x = self.fc2(x)
        return x

net = Net()

# 定义损失函数和优化器
criterion = nn.MSELoss()
optimizer = optim.SGD(net.parameters(), lr=0.01)

# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):
    inputs = x_train
    targets = y_train

    # 前向传播
    outputs = net(inputs)
    loss = criterion(outputs, targets)

    # 反向传播和优化
    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

    if (epoch+1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, loss.item()))

# 可视化结果
predicted = net(x_train).detach().numpy()
plt.plot(x_train.numpy(), y_train.numpy(), 'ro', label='Original data')
plt.plot(x_train.numpy(), predicted, label='Fitted line')
plt.legend()
plt.show()

在上述代码中,我们首先创建了一个一维数据集x_trainy_train。然后,我们将数据集转换为张量,并定义了一个回归神经网络Net。接着,我们定义了损失函数和优化器,并使用训练集训练模型。最后,我们使用Matplotlib可视化了结果。

使用GPU进行加速

如果你的计算机支持GPU,你可以使用GPU进行加速。示例代码如下:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(device)

net.to(device)

inputs, labels = inputs.to(device), labels.to(device)

在上述代码中,我们首先判断计算机是否支持GPU。然后,我们将模型和数据移动到GPU上。这样,我们就可以使用GPU进行加速。

总结

本文介绍了如何使用PyTorch搭建分类回归神经网络,并使用GPU进行加速。我们可以使用PyTorch的nn.Module类定义模型,使用nn.CrossEntropyLoss()函数定义损失函数,使用optim.SGD()函数定义优化器,使用backward()函数进行反向传播,使用step()函数更新参数。如果你的计算机支持GPU,你可以使用GPU进行加速。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Pytorch 搭建分类回归神经网络并用GPU进行加速的例子 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • pytorch imagenet测试代码

    image_test.py import argparse import numpy as np import sys import os import csv from imagenet_test_base import TestKit import torch class TestTorch(TestKit): def __init__(self): s…

    PyTorch 2023年4月8日
    00
  • PyTorch一小时掌握之autograd机制篇

    PyTorch一小时掌握之autograd机制篇 在本文中,我们将介绍PyTorch的autograd机制,这是PyTorch的一个重要特性,用于自动计算梯度。本文将包含两个示例说明。 autograd机制的基本概念 在PyTorch中,autograd机制是用于自动计算梯度的核心功能。它可以根据输入和计算图自动计算梯度,并将梯度存储在张量的.grad属性中…

    PyTorch 2023年5月15日
    00
  • pytorch normal_(), fill_()

    比如有个张量a,那么a.normal_()就表示用标准正态分布填充a,是in_place操作,如下图所示: 比如有个张量b,那么b.fill_(0)就表示用0填充b,是in_place操作,如下图所示:   这两个函数常常用在神经网络模型参数的初始化中,例如 import torch.nn as nn net = nn.Linear(16, 2) for m…

    2023年4月7日
    00
  • Pytorch 细节记录

    1. PyTorch进行训练和测试时指定实例化的model模式为:train/eval eg: class VAE(nn.Module): def __init__(self): super(VAE, self).__init__() … def reparameterize(self, mu, logvar): if self.training: st…

    2023年4月8日
    00
  • Pytorch Tensor 常用操作

    https://pytorch.org/docs/stable/tensors.html dtype: tessor的数据类型,总共有8种数据类型,其中默认的类型是torch.FloatTensor,而且这种类型的别名也可以写作torch.Tensor。   device: 这个参数表示了tensor将会在哪个设备上分配内存。它包含了设备的类型(cpu、cu…

    2023年4月6日
    00
  • pytorch实现LeNet5代码小结

    目录 代码一 代码二 代码三 代码一 训练代码: import torch import torch.optim as optim import torch.nn as nn import torch.nn.functional as F import torchvision import torchvision.transforms as transfor…

    PyTorch 2023年4月8日
    00
  • 安装anaconda及pytorch

    安装anaconda,下载64位版本安装https://www.anaconda.com/download/    官网比较慢,可到清华开源镜像站上下载 环境变量: D:\Anaconda3;D:\Anaconda3\Library\mingw-w64\bin;D:\Anaconda3\Library\usr\bin;D:\Anaconda3\Library…

    2023年4月8日
    00
  • WARNING: Ignoring invalid distribution -ip (d:\anaconda\envs\pytorch1_7\lib\site-packages)

    错误提示:    解决办法: 1.找到该目录    2.删除带~的文件夹(这种情况是由插件安装失败/中途退出引起的,这会导致插件安装异常)  

    2023年4月7日
    00
合作推广
合作推广
分享本页
返回顶部