PyTorch模型转TensorRT是一种将PyTorch模型优化为在NVIDIA GPU上高效运行的技术。下面将详细介绍该转换过程的完整攻略。
1.安装TensorRT
首先,需要安装TensorRT并配置好环境,具体的安装步骤可以参考TensorRT官网的文档(https://docs.nvidia.com/deeplearning/tensorrt/install-guide/index.html)。
2.准备PyTorch模型
将PyTorch模型转换为TensorRT需要先准备好PyTorch模型。在这里我们将使用一个简单的模型作为示例。
import torch.nn as nn
class SimpleModel(nn.Module):
def __init__(self, in_channels, out_channels):
super(SimpleModel, self).__init__()
self.layer1 = nn.Conv2d(in_channels, 32, kernel_size=3)
self.layer2 = nn.Conv2d(32, out_channels, kernel_size=3)
def forward(self, x):
x = self.layer1(x)
x = nn.functional.relu(x)
x = self.layer2(x)
return x
该模型的输入为in_channels
个通道的2D图像,并且输出为out_channels
个通道的2D图像。在这个示例中,我们使用了两个卷积层。
3.将PyTorch模型转换为TensorRT引擎
有了PyTorch模型和TensorRT的环境,就可以将PyTorch模型转换为TensorRT引擎了。使用TensorRT API可以将PyTorch模型进行序列化、优化和转换,生成TensorRT引擎。
import tensorrt as trt
import torch
import torchvision
def convert_pytorch_to_trt(engine_file_path, model, input_shape):
# Create a TensorRT engine
EXPLICIT_BATCH = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(network, TRT_LOGGER) as parser:
builder.max_workspace_size = 1 << 30 # 1GB
builder.max_batch_size = 1
builder.fp16_mode = True
# Serialize the PyTorch model
model.eval()
with torch.no_grad():
dummy_input = torch.randn(*input_shape).cuda()
output = model(dummy_input)
torch.onnx.export(model, dummy_input, "model.onnx", verbose=False, input_names=['input'], output_names=['output'])
# Convert the ONNX model to TensorRT engine
with open("model.onnx", 'rb') as model_file:
parser.parse(model_file.read())
engine = builder.build_cuda_engine(network)
with open(engine_file_path, "wb") as f:
f.write(engine.serialize())
在上面的代码中,将PyTorch模型转换为TensorRT引擎的第一步是使用onnx.export
方法将PyTorch模型序列化为ONNX模型。然后,使用TensorRT中的OnnxParser
将ONNX模型解析为TensorRT网络,该网络可以被TensorRT引擎用于推理。最后,使用builder.build_cuda_engine
创建TensorRT引擎并将其序列化并保存到磁盘上。
一旦TensorRT引擎被创建,它可以在GPU上高效地推理。下面是使用转换后的TensorRT引擎来执行前向传播的示例。
4.使用TensorRT引擎进行前向传播
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
def inference_onnx_and_trt(model, input_shape):
trt_file_path = "model.trt"
input_data = np.random.rand(*input_shape)
# ONNX inference
with torch.no_grad():
output = model(torch.from_numpy(input_data).cuda()).cpu().numpy()
print("ONNX output shape: ", output.shape)
# TensorRT inference
with open(trt_file_path, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime:
engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
inputs, outputs, bindings = [], [], []
for binding in engine:
size = trt.volume(engine.get_binding_shape(binding)) * engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
# Allocate device buffer
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
bindings.append(int(device_mem))
# Add to appropriate list
if engine.binding_is_input(binding):
inputs.append((host_mem, device_mem))
else:
outputs.append((host_mem, device_mem))
# Copy input data to device
inputs[0][0][:] = input_data.ravel()
stream = cuda.Stream()
# Execute TensorRT engine
context.execute_async_v2(bindings=bindings, stream_handle=stream.handle)
# Copy output data to host
[cuda.memcpy_dtoh_async(out[0], out[1], stream) for out in outputs]
# Synchronize the stream
stream.synchronize()
output_trt = outputs[0][0].reshape(engine.max_batch_size, -1)
print("TensorRT output shape: ", output_trt.shape)
在上面的代码中,我们首先在ONNX模型上运行了前向传递,并打印了输出矩阵的形状,然后在TensorRT模型上运行了前向传递,并再次打印了输出的形状。
到这里,我们就完整介绍了将PyTorch模型转换为TensorRT引擎的攻略,以上示例说明使用了一个简单的模型作为范例,但是整个过程也同样适用于更复杂的模型。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch模型转TensorRT是怎么实现的? - Python技术站