查看Redis的性能状态不得不提到info。
官方文档http://redis.io/commands/info
下面简单的介绍一下info的信息:
info主要有一下几项,因版本不同可能略有差别
- server
- clients
- memory
- persistence
- stats
- replication
- cpu
- keyspace
server段一般是配置以及系统项不用特别的关注。
client段:
\# Clients
connected_clients:2053 #当前客户端连接数
client_longest_output_list:0 #当前连接的客户端当中,最长的输出列表
client_biggest_input_buf:0 # 当前连接的客户端当中,最大输入缓存
blocked_clients:0 #被阻塞的客户端数
因为Redis是单线程模型(只能使用单核),来处理所有客户端的请求, 但由于客户端连接数的增长,处理请求的线程资源开始降低分配给单个客户端连接的处理时间,这时每个客户端需要花费更多的时间去等待Redis共享服务的响应。
因为Redis是单线程模型(只能使用单核),来处理所有客户端的请求,且Redis默认允许客户端连接的最大数量是10000。若是看到连接数超过5000以上,那可能会影响Redis的性能。因此监控客户端连接数是非常重要的,因为客户端创建连接数的数量可能超出预期的数量,也可能是客户端端没有有效的释放连接。
相关配置项:
maxclients 10000
tcp-backlog 10240 #TCP 监听的最大容纳数量 默认511
memory段:
# Memory
used_memory:65256464 #使用内存,以字节(byte)为单位
used_memory_human:62.23M #以人类可读的格式返回 Redis 分配的内存总量
used_memory_rss:54554624 #系统给redis分配的内存即常驻内存,和top 、 ps 等命令的输出一致。
used_memory_peak:2857386920 #内存使用的峰值大小
used_memory_peak_human:2.66G #以人类可读的格式返回 Redis 的内存峰值
used_memory_lua:33792 #lua引擎使用的内存
mem_fragmentation_ratio:0.84 #redis 内存碎片率
mem_allocator:jemalloc-3.6.0 #内存分配器
在使用redis经常会因为memory引发一些列的问题。像因为内存交换产生的性能问题以及延迟问题等。
我们可以通过一下几种方式来减少redis内存交换的发生
- 使用Hash Redis在储存小于100个字段的Hash结构上,其存储效率是非常高的。官方也建议我们尽可能多的使用Hash存储。Hash的操作命令是HSET(key, fields, value)和HGET。
- 设置key的过期时间
- 回收key 设置要maxmemory,切redis实例启用了rdb功能就需要将maxmemory设置为系统可使用内存的45%,因为快照时需要一倍的内存来复制整个数据集,也就是说如果当前已使用45%,在快照期间会变成95%(45%+45%+5%),其中5%是预留给其他的开销。如果没开启快照功能,maxmemory最高能设置为系统可用内存的95%。
当内存使用达到设置的最大阀值时,需要选择一种key的回收策略,即配置文件中的maxmemory-policy字段设置
若是Redis数据集中的key都设置了过期时间,那么volatile-ttl策略是比较好的选择。但如果key在达到最大内存限制时没能够迅速过期,或者根本没有设置过期时间。那么设置为allkeys-lru值比较合适,它允许Redis从整个数据集中挑选最近最少使用的key进行删除(LRU淘汰算法)。
Redis还提供了一些其他淘汰策略,如下:
- volatile-lru:使用LRU算法从已设置过期时间的数据集合中淘汰数据。
- volatile-ttl:从已设置过期时间的数据集合中挑选即将过期的数据淘汰。
- volatile-random:从已设置过期时间的数据集合中随机挑选数据淘汰。
- allkeys-lru:使用LRU算法从所有数据集合中淘汰数据。
- allkeys-random:从数据集合中任意选择数据淘汰。
- no-enviction:禁止淘汰数据。
通过设置maxmemory为系统可用内存的45%或95%(取决于持久化策略)和设置maxmemory-policy为volatile-ttl或allkeys-lru(取决于过期设置),可以比较准确的限制Redis最大内存使用率,在绝大多数场景下使用这2种方式可确保Redis不会进行内存交换。倘若你担心由于限制了内存使用率导致丢失数据的话,可以设置noneviction值禁止淘汰数据。
另外一定要配置/proc/sys/vm/min_free_kbytes 让系统及时回收内存
echo 102400 > /proc/sys/vm/min_free_kbytes 设置100m开始回收内存
persistence 段
# Persistence
loading:0
rdb_changes_since_last_save:1866 #自上次dump后rdb的改动
rdb_bgsave_in_progress:0 #标识rdb save是否进行中
rdb_last_save_time:1452048771 #上次save的时间戳
rdb_last_bgsave_status:ok #上次的save操作状态
rdb_last_bgsave_time_sec:0 #上次rdb save操作使用的时间(单位s)
rdb_current_bgsave_time_sec:-1 #如果rdb save操作正在进行,则是所使用的时间
aof_enabled:1 #是否开启aof,默认没开启(已开启)
aof_rewrite_in_progress:0 #标识aof的rewrite操作是否在进行中
aof_rewrite_scheduled:0 #标识是否将要在rdb save操作结束后执行
aof_last_rewrite_time_sec:0 #上次rewrite操作使用的时间(单位s)
aof_current_rewrite_time_sec:-1 #如果rewrite操作正在进行,则记录所使用的时间
aof_last_bgrewrite_status:ok #上次rewrite操作的状态
aof_last_write_status:ok #上次write操作的状态
aof_current_size:42820373 #aof当前大小,以字节(byte)为单位
aof_base_size:16223723 #aof上次启动或rewrite的大小
aof_pending_rewrite:0 #同上面的aof_rewrite_scheduled
aof_buffer_length:0 #aof buffer的大小
aof_rewrite_buffer_length:0 #aof rewrite buffer的大小
aof_pending_bio_fsync:0 #后台IO队列中等待fsync任务的个数
aof_delayed_fsync:41394 #延迟的fsync计数器 TODO
stats段
# Stats
total_connections_received:61264941 #自启动起连接过的总数
total_commands_processed:951647408 #自启动起运行命令的总数
instantaneous_ops_per_sec:13 #每秒执行的命令个数
rejected_connections:0 #因为最大客户端连接书限制,而导致被拒绝连接的个数
sync_full:23
sync_partial_ok:0
sync_partial_err:0
expired_keys:40225836 #自启动起过期的key的总数
evicted_keys:0 #因为内存大小限制,而被驱逐出去的键的个数
keyspace_hits:54841673 #自启动起命中key的个数
keyspace_misses:344507 #自启动起未命中key的个数
pubsub_channels:0
pubsub_patterns:0
latest_fork_usec:8775 #上次的fork操作使用的时间(单位ms)
因为Redis是个单线程模型,客户端过来的命令是按照顺序执行的。因此网络问题、慢命令会造成阻塞导致redis性能下降。
如果发生命令阻塞就可以看到每秒命令处理数在明显下降。要分析解决这个性能问题,需要跟踪命令处理数的数量和延迟时间。
降低延迟的几个技巧:
- 使用多参数命令 若是客户端在很短的时间内发送大量的命令过来,会发现响应时间明显变慢,这由于后面命令一直在等待队列中前面大量命令执行完毕。因此我们可以使用单命令多参数的方式,来减少操作。例如mset mget hmset hmget等。
- 管道拼接,降低网络延迟
- 避免操作大集合的慢命令
产看redis延迟时间
[root@13 ~]# /usr/local/redis6379/bin/redis-cli -c -h 192.168.11.13 -p 6380 --latency
min: 0, max: 3, avg: 0.16 (9746 samples)
本机的延迟是160μs
查询慢日志:
redis-cli -h 127.0.0.1 -p 6379 slowlog get
1) 1) (integer) 11
2) (integer) 1451987715
3) (integer) 14387
4) 1) "CONFIG"
2) "GET"
3) "*
1)日志的唯一标识符
2)被记录命令的执行时间点,以 UNIX 时间戳格式表示
3)查询执行时间,以微秒为单位。例子中命令使用14毫秒。
4)执行的命令,以数组的形式排列。完整命令是config get *
replication段
# Replication
role:master #角色(主从)
connected_slaves:1 #从库数量
slave0:ip=10.15.x.x,port=6379,state=online,offset=2230297606,lag=2 #从库信息
master_repl_offset:2230300129
repl_backlog_active:1
repl_backlog_size:1048576
repl_backlog_first_byte_offset:2229251554
repl_backlog_histlen:1048576
cpu段
# CPU
used_cpu_sys:23111.87 #cpu在内核态所消耗的cpu的时间
used_cpu_user:17763.81 #cpu在用户态所消耗的cpu的时间
used_cpu_sys_children:7909.22
used_cpu_user_children:62767.11
key段
# Keyspace
db0:keys=85904,expires=81390,avg_ttl=47463342
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:redis info 详解 - Python技术站