不废话直接代码吧

# 1.模块导入
import jieba
import gensim
from gensim import corpora
from gensim import models
from gensim import similarities


# 2.制作问题库

# 2.制作问题库
l1 = ["你叫什么名字", "你的姓名是什么", "你的体重是多少", "你的年龄是多少"]  # 问题库

# 3.对问题样本和问题库分词处理
a = "请问你的名称"  # 问题样本
all_doc_list = []
for doc in l1:
    doc_list = [word for word in jieba.cut(doc)]
    all_doc_list.append(doc_list)
doc_test_list = [word for word in jieba.cut(a)]
print(all_doc_list)
print(doc_test_list)


# 4.制作语料库

dictionary = corpora.Dictionary(all_doc_list)  # 制作词袋
# 词袋的理解
# 词袋就是将很多很多的词,进行排列形成一个 词(key) 与一个 标志位(value) 的字典
# 例如: {'什么': 0, '你': 1, '叫': 2, '名字': 3, '姓名': 4, '是': 5, '的': 6, '体重': 7, '多少': 8, '年龄': 9}

print("token2id", dictionary.token2id)
print("dictionary", dictionary, type(dictionary))

# -->问题库的语料库
corpus = [dictionary.doc2bow(doc) for doc in all_doc_list]
# 语料库:
# 这里是将all_doc_list 中的每一个列表中的词语 与 dictionary 中的Key进行匹配
# 得到一个匹配后的结果,例如['你', '叫', '什么', '名字']
# 就可以得到 [(0, 1), (1, 1), (2, 1), (3, 1)]
# 依次:0代表的的是 你 1代表出现一次, 1代表的是 叫  1代表出现了一次, 以此类推
print("corpus", corpus, type(corpus))

# -->问题的语料库
# 将需要寻找相似度的分词列表 做成 语料库 doc_test_vec
doc_test_vec = dictionary.doc2bow(doc_test_list)
print("doc_test_vec", doc_test_vec, type(doc_test_vec))

# 5. 将corpus语料库(初识语料库) 使用Lsi模型进行训练

lsi = models.LsiModel(corpus)
# 模型有很多,这里的只是需要学习Lsi模型来了解的,这里不做阐述
print("lsi", lsi, type(lsi))
# 语料库corpus的训练结果
print("lsi[corpus]", lsi[corpus])
# 获得语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示
print("lsi[doc_test_vec]", lsi[doc_test_vec])

# 6. 获取文本相似度

# 稀疏矩阵相似度 将 主 语料库corpus的训练结果 作为初始值
index = similarities.SparseMatrixSimilarity(lsi[corpus], num_features=len(dictionary.keys()))
print("index", index, type(index))

# 将 语料库doc_test_vec 在 语料库corpus的训练结果 中的 向量表示 与 语料库corpus的 向量表示 做矩阵相似度计算
sim = index[lsi[doc_test_vec]]
print("sim", sim, type(sim))

# 7. 获取相似度最高的结果
# 对下标和相似度结果进行一个排序,拿出相似度最高的结果
# cc = sorted(enumerate(sim), key=lambda item: item[1],reverse=True)
cc = sorted(enumerate(sim), key=lambda item: -item[1])
print(cc)

text = l1[cc[0][0]]
print(a,text)