pytorch实现特殊的Module–Sqeuential三种写法

PyTorch中的nn.Sequential是一个特殊的模块,它允许我们按顺序组合多个模块。在本文中,我们将介绍三种不同的方法来使用nn.Sequential,并提供两个示例。

方法1:使用列表

第一种方法是使用列表来定义nn.Sequential。在这种方法中,我们将每个模块作为列表的一个元素,并将它们按顺序排列。以下是一个示例:

import torch.nn as nn

model = nn.Sequential([
    nn.Linear(784, 500),
    nn.ReLU(),
    nn.Linear(500, 10)
])

在这个示例中,我们定义了一个名为modelnn.Sequential模块,其中包含一个线性层、一个ReLU激活函数和另一个线性层。这些模块按照它们在列表中的顺序排列。

方法2:使用有序字典

第二种方法是使用有序字典来定义nn.Sequential。在这种方法中,我们将每个模块作为有序字典的一个键值对,并将它们按顺序排列。以下是一个示例:

import torch.nn as nn
from collections import OrderedDict

model = nn.Sequential(OrderedDict([
    ('fc1', nn.Linear(784, 500)),
    ('relu1', nn.ReLU()),
    ('fc2', nn.Linear(500, 10))
]))

在这个示例中,我们定义了一个名为modelnn.Sequential模块,其中包含一个名为fc1的线性层、一个名为relu1的ReLU激活函数和另一个名为fc2的线性层。这些模块按照它们在有序字典中的顺序排列。

方法3:使用函数

第三种方法是使用函数来定义nn.Sequential。在这种方法中,我们定义一个函数,该函数接受一个模块列表作为参数,并返回一个nn.Sequential模块。以下是一个示例:

import torch.nn as nn

def make_model():
    layers = [
        nn.Linear(784, 500),
        nn.ReLU(),
        nn.Linear(500, 10)
    ]
    return nn.Sequential(*layers)

model = make_model()

在这个示例中,我们定义了一个名为make_model的函数,该函数返回一个nn.Sequential模块。我们将模块列表作为参数传递给函数,并使用*运算符将它们解包为单独的参数。然后,我们将返回的nn.Sequential模块赋值给名为model的变量。

示例1:使用nn.Sequential进行手写数字识别

以下是一个使用nn.Sequential进行手写数字识别的示例:

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms

# 加载MNIST数据集
train_dataset = dsets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = dsets.MNIST(root='./data', train=False, transform=transforms.ToTensor())

# 加载数据集
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)

# 定义模型
model = nn.Sequential(
    nn.Linear(784, 500),
    nn.ReLU(),
    nn.Linear(500, 10)
)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

# 训练模型
total_step = len(train_loader)
for epoch in range(10):
    for i, (images, labels) in enumerate(train_loader):
        images = images.reshape(-1, 28*28)

        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, total_step, loss.item()))

# 测试模型
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        images = images.reshape(-1, 28*28)
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))

在这个示例中,我们首先加载了MNIST数据集。然后,我们定义了一个名为modelnn.Sequential模块,并定义了一个名为criterion的损失函数和一个名为optimizer的优化器。然后,我们使用训练数据对模型进行了训练,并在每个epoch结束时输出损失值。最后,我们使用测试数据对模型进行了测试,并输出了模型的准确率。

示例2:使用nn.Sequential进行猫狗分类

以下是一个使用nn.Sequential进行猫狗分类的示例:

import torch
import torch.nn as nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import torchvision.models as models

# 加载数据集
train_dataset = dsets.ImageFolder(root='./data/train', transform=transforms.Compose([
    transforms.Resize(224),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]))
test_dataset = dsets.ImageFolder(root='./data/test', transform=transforms.Compose([
    transforms.Resize(224),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
]))
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=100, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=100, shuffle=False)

# 加载预训练模型
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 2)

# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)

# 训练模型
total_step = len(train_loader)
for epoch in range(10):
    for i, (images, labels) in enumerate(train_loader):
        # 前向传播
        outputs = model(images)
        loss = criterion(outputs, labels)

        # 反向传播和优化
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        if (i+1) % 100 == 0:
            print ('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, 10, i+1, total_step, loss.item()))

# 测试模型
with torch.no_grad():
    correct = 0
    total = 0
    for images, labels in test_loader:
        outputs = model(images)
        _, predicted = torch.max(outputs.data, 1)
        total += labels.size(0)
        correct += (predicted == labels).sum().item()

    print('Accuracy of the model on the test images: {} %'.format(100 * correct / total))

在这个示例中,我们首先加载了猫狗分类数据集。然后,我们加载了一个预训练的ResNet18模型,并将其输出层替换为一个名为fc的线性层。然后,我们定义了一个名为criterion的损失函数和一个名为optimizer的优化器。然后,我们使用训练数据对模型进行了训练,并在每个epoch结束时输出损失值。最后,我们使用测试数据对模型进行了测试,并输出了模型的准确率。

结论

在本文中,我们介绍了三种不同的方法来使用nn.Sequential,并提供了两个示例。如果您按照这些方法进行操作,您应该能够使用nn.Sequential成功定义和训练PyTorch模型。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch实现特殊的Module–Sqeuential三种写法 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • 基于pytorch框架的yolov5训练与pycharm远程连接服务器

    yolov5 pytorch工程准备与环境部署 yolov5训练数据准备 yolov5训练 pycharm远程连接 pycharm解释器配置 测试 1.  yolov5 pytorch工程准备与环境部署 (1)下载yolov5工程pytorch版本源码 https://github.com/ultralytics/yolov5 (2)环境部署 用anacon…

    2023年4月8日
    00
  • Python实现将一段话txt生成字幕srt文件

    要将一段话txt生成字幕srt文件,可以使用Python编程语言来实现。下面是一个完整的攻略,包括两个示例说明。 步骤1:读取txt文件 首先,我们需要读取包含要转换为字幕的文本的txt文件。可以使用Python内置的open()函数来打开文件,并使用read()方法读取文件内容。以下是一个示例: with open(‘input.txt’, ‘r’) as…

    PyTorch 2023年5月15日
    00
  • Windows10+Anaconda+PyTorch(cpu版本)环境搭建

    1.安装Anaconda,具体参考网上相关教程 2.安装PyTorch 2.1 在Anaconda自带的Anaconda Prompt中创建名为PyTorch的虚拟环境【conda create –name PyTorch python=3.6】(python版本设置为3.6) 2.2 激活PyTorch虚拟环境  2.3 安装PyTorch,官网地址:h…

    2023年4月8日
    00
  • PyTorch–>torch.max()的用法

                   _, predited = torch.max(outputs,1)   # 此处表示返回一个元组中有两个值,但是对第一个不感兴趣 返回的元组的第一个元素是image data,即是最大的值;第二个元素是label,即是最大的值对应的索引。由于我们只需要label(最大值的索引),所以有 _ , predicted这样的赋值语句…

    2023年4月6日
    00
  • ubuntun16.04+cuda9.0+cudnn7+anaconda3+pytorch+anaconda3下py2安装pytorch

    一、电脑配置 说明: 电脑配置: LEGION笔记本CPU Inter Core i7 8代GPU NVIDIA GeForce GTX1060Windows10 所需的环境: Anaconda3(64bit)CUDA-9.0CuDNN-7.1 二、安装cuda 1.查看自己电脑NVIDIA图形卡是否支持GPU运算 在安装之前你要先查看你的电脑是否支持GPU…

    2023年4月8日
    00
  • Win10操作系统中PyTorch虚拟环境配置+PyCharm配置

    Win10操作系统中PyTorch虚拟环境配置+PyCharm配置 在使用PyTorch进行深度学习开发时,我们通常需要搭建一个适合自己的开发环境。本文将介绍如何在Win10操作系统中配置PyTorch虚拟环境,并使用PyCharm进行开发,并演示两个示例。 示例一:使用Anaconda创建PyTorch虚拟环境 下载并安装Anaconda:从Anacond…

    PyTorch 2023年5月15日
    00
  • PyTorch Softmax

    PyTorch provides 2 kinds of Softmax class. The one is applying softmax along a certain dimension. The other is do softmax on a spatial matrix sized in B, C, H, W. But it seems like…

    2023年4月8日
    00
  • pytorch网络模型构建场景的问题介绍

    在PyTorch中,网络模型构建是深度学习任务中的重要环节。在实际应用中,我们可能会遇到一些网络模型构建场景的问题。本文将介绍一些常见的网络模型构建场景的问题,并提供两个示例。 问题一:如何构建多输入、多输出的网络模型? 在某些情况下,我们需要构建多输入、多输出的网络模型。例如,我们可能需要将两个不同的输入数据分别输入到网络中,并得到两个不同的输出结果。在P…

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部