Opencv 4-邻域连通域标记

以下是关于Opencv 4-邻域连通域标记的详细攻略。

Opencv 4-邻域连通域标记基本原理

Opencv 4-邻域通域标记是一种常用的图像处理技术,可以用于在图像中找连通域。具体实现方法包括:

  • cv2.connectedComponents 函数:用于对二值图像进行连通域标记。

4-邻域连通域标记算法的基本原理是将二值图像中的像素点分为若干个连通域,每个连通域中的像素点都是相互连通的。在标记过程中,首先将二值图像中的像素点分为前景像素和背景像素,然后对前景像进行连通域标记,最后每个连通域进行编号。

Opencv 4-邻域连通域标记的使用方法

Opencv 库提供 cv.connectedComponents 函数,可以用对二值图像进行4-邻域连通域标记。函数的基本语法如下:

num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(image, connectivity, ltype)

其中,image 表示待标记的二值图像,connectivity 表示连通域的连接方式,ltype 表示标记结果的数据类型,num_labels 表示连通域的数量,labels 表示标记结果,stats 表示每个连通域的统计信息,centroids 表示每个连通域的质心坐标。

示例说明

下面是两个 Opencv 4-邻域连通域标记的示例:

示例1:使用 connectedComponentsWithStats 函数对二值图像进行连通域标记

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg', 0)

# 对图像进行二值化处理
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 对二值图像进行连通域标记
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh, connectivity=4, ltype=cv2.CV_32S)

# 在原始图像中标记连通域
for i in range(1, num_labels):
    x, y, w, h, area = stats[i]
    cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)

# 显示原始图像和标记后的图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和标记后的图像。

示例2:使用 connectedComponentsWithStats 函数对二值图像进行连通域标记

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg', 0)

# 对图像进行二值化处理
ret, thresh = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# 对二值图像进行连通域标记
num_labels, labels, stats, centroids = cv2.connectedComponentsWithStats(thresh, connectivity=4, ltype=cv2.CV_32S)

# 获取连通域中的最大面积
max_area = np.max(stats[1:, -1])

# 在原始图像中标记最大连通域
for i in range(1, num_labels):
    x, y, w, h, area = stats[i]
    if area == max_area:
        cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2)

# 显示原始图像和标记后的图像
cv2.imshow('image', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和标记后的图像。

结论

Opencv 4-邻域连通域标记是一种常用的图像处理技术,可以用于在图像中查找连通域。通过 Opencv 中的 cv2.connectedComponentsWithStats 函数,可以实现对二值图像的4-邻域连通域标记。通过本文介绍,应该已经了解 Opencv 4-邻域连通域标记的基本原理、方法和两个示例说明,根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 4-邻域连通域标记 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv 利用k-平均聚类算法进行减色处理第二步

    以下是关于Opencv利用k-平均聚类算法进行减色处理第二步的详细攻略。 Opencv利用k-平均聚类算法进行减色处理第二步基本原理 利用k-平聚类算法进行减色处理的第二步是指对聚类结果进行评估,来判断聚类的效果和准确。常用的估指标包括SSE、轮廓系数等。 Opencv利用k-平均聚类法进行减色处理第二步步骤 计算SSE 计算轮廓系数 示例 下面是两个Ope…

    python 2023年5月11日
    00
  • Opencv灰度化

    OpenCV大津二值化算法 OpenCV大津二值化算法是一种自适应的二值化方法,可以根据图像的灰度分布自动确定二值化的阈值,从而将图像转换为黑白二值图像。本文将介绍大津二值化算法的基本原理和使用方法,并提供两个示例说明。 大津二值化算法的基本原理 大津二值化算法的基本原理是寻找一个阈值,使得将图像分为两个部分后,两个部分的类内方差之和最小,类间方差之和最大。…

    python 2023年5月10日
    00
  • Opencv Zhang-Suen细化算法

    OpenCV 中的 Zhang-Suen 细化算法是一种图像处理技术,它可以将二值化图像中的线条细化为单像素宽度。在 OpenCV 中,可以使用 cv2.ximgproc.thinning() 函数来实现 Zhang-Suen 细化算法。 使用 cv2.ximgproc.thinning() 函数的基本语法如下: thinned = cv2.ximgproc…

    python 2023年5月11日
    00
  • Opencv 离散余弦变换+量化

    Opencv 离散余弦变换+量化的完整攻略 Opencv 离散余弦变换+量化是一种常见的图像处理技术,可以用于图像的压缩、特征提取等操作。本文将详细Opencv 离散余弦变换+量化的完整攻略,包括基本原理、方法和两个示例说明。 Opencv 离散余弦变换+量化的基本原理 Opencv 离散余弦变换+量化是一种基于离散余弦变换和量化的图像处理技术,通过对图像进…

    python 2023年5月10日
    00
  • Opencv 霍夫逆变换

    Opencv 霍夫逆变换是一种基于霍夫变换的图像处理技术,可以将霍夫变换后的参数空间转换回图像空间,从而实现对图像的分割和重建。本文将细讲解 Opencv 霍夫逆变换的完整攻略,包括基本原理、方法和两个示例。 Opencv 霍夫逆变换的基本原理 Opencv 霍夫逆变换是一种基于霍夫变换的图像处理技术,可以将霍夫变换后的参数空间转换回图像空间,从而实现对图像…

    python 2023年5月10日
    00
  • Opencv 使用误差平方和算法进行模式匹配

    Opencv 使用误差平方和算法进行模式匹配是一种常用的图像处理技术,可以用于在图像中查找指定的模式。本文将详细讲解Opencv 使用误差平和算法进行模式匹配的完整攻略,包括基本原理、方法和两个示例。 Opencv 使用误差平方和算法进行模式匹配基本原理 Opencv 使用误差平方和算法进行模式匹配是一种基于模板匹配的技,通过对图像进行模板匹配操作,可以在图…

    python 2023年5月10日
    00
  • Opencv 简单图像识别第四步

    以下是关于Opencv简单图像识别第四步的详细攻略。 Opencv简单图像识别第四步的基本原理 Opencv简单图像识别第四步是指通过对模型进行评估,来判断模型的性能和准确度。用的评估指标包括准确率、召回、F1值等。 Opencv简单图像识别第四步的步骤 准备测试数据和测试标签 使用训练好的模型进行预测 计算评估指标 示例说明 下面是两个Opencv简单图像…

    python 2023年5月10日
    00
  • Opencv Canny边缘检测 边缘细化

    Opencv Canny边缘检测边缘细化的完整攻略 Opencv Canny边缘检测边缘细化是一种常用的图像处理技术,可以用于图像的边缘检测和边缘细化。本文将详细讲解Opencv Canny边缘检测边缘细化的完整攻略,包括基本原理、方法和两个示例。 Opencv Canny边缘检测边缘细化的基本原理 Opencv Canny边缘检测边缘细化是一种基于梯度计算…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部