python-函数-统计函数

#(1)amax(),amin() 作用:计算数组中的元素沿指定轴的最大值,最小值 
import numpy as np
x = np.random.randint(1,11,9).reshape((3,3))
print(x)
#output:
[[ 9  1  2]
 [ 5  2  6]
 [10 10  3]]
print(np.amin(x,0))
#每一列的最小值
print(np.amin(x,1))
#每一行的最小值
print(np.amax(x,0))
#每一列的最大值
print(np.amax(x,1))
#每一行的最大值
#output:
[5 1 2]
[1 2 3]
[10 10  6]
[ 9  6 10]
#(2)ptp() 作用:计算数组中元素最大值与最小值的差(最大值-最小值)
import numpy as np
x = np.random.randint(1,11,9).reshape((3,3))
print(x)

print(np.ptp(x))

print(np.ptp(x,0))

print(np.ptp(x,1))
#output:
[[10  6  2]
 [ 2 10 10]
 [ 6  5 10]]
8
[8 5 8]
[8 8 5]
#(3)percentile() 原型:numpy.percentile(a,p,axis) #a为数组 p为要计算的百分位数,在0~100之间,axis:沿着它计算百分比的轴 作用:百分位数是统计中使用的度量,表示小于这个值的观察值的百分比
x = np.array([[10,7,4],[3,2,1]])
print(x)
print(np.percentile(x,50))
print(np.percentile(x,50,axis=0))
print(np.percentile(x,50,axis=1))
(10+3)/2=6.5
#output:
[[10  7  4]
 [ 3  2  1]]
3.5
[6.5 4.5 2.5]
[7. 2.]
#(4)median() 作用:算数组中元素的中位数(中值)
import numpy as np
x = np.array([[30,65,70],[80,95,10],[50,90,60]])
print(x)
print("\n")

print(np.median(x))
print(np.median(x,axis=0))
print(np.median(x,axis=1))
#(5)mean() 作用:返回数组中元素的算数平方根
import numpy as np
x = np.arange(1,10).reshape((3,3))
print("x数组:")
print(x)
print("\n")

print(np.mean(x))
print(np.mean(x,axis=0))
print(np.mean(x,axis=1))
#output:
x数组:
[[1 2 3]
 [4 5 6]
 [7 8 9]]


5.0
[4. 5. 6.]
[2. 5. 8.]
#(6)average()作用:根据在另一个数组中给出的各自权重计算数组中的元素的加权平均值,可以接受一个轴参数。如果没有指定轴,则数组会被展开
import numpy as np
x = np.array([1,2,3,4])
print(x)
print(np.average(x))
wts = np.array([4,3,2,1])
print(np.average(x,weights=wts))
#如果return 参数为true,则返回权重的和
print("权重的和:")
print(np.average([1,2,3,4],weights=[4,3,2,1],returned=True))

x = np.array([0,1,2,3,4,5]).reshape((3,2))
print(x)
wts = np.array([3,5])
print(np.average(x,axis=1,weights=wts))
#(0*3+1*5)/(3+5)=5/8=0.625
#output:
[1 2 3 4]
2.5
2.0
权重的和:
(2.0, 10.0)
[[0 1]
 [2 3]
 [4 5]]
[0.625 2.625 4.625]
#(7)标准差 公式: std = sqrt(mean((x-x.mean())**2))
如果数组是[1,2,3,4],则其平均值为2.5,因此,差的平方是[2.25,0.25,0.25,2.25],并且其平均值的平方根除以4,即sqrt(5/4),结果为1.118033........
x = np.array([1,2,3,4])
print(x)
x - np.mean(x)
1.5*1.5
0.5*0.5
y = np.array([2.25,0.25,0.25,2.25])
np.mean(y)
np.sqrt(1.25)
#也即
import numpy as np
print(np.std([1,2,3,4]))
#output:
[1 2 3 4]
1.118033988749895
#(8)方差. mean((x-x.mean())**2) 标准差是方差的平方根
print(np.var([1,2,3,4]))
#也即
x = np.array([1,2,3,4])
x - np.mean(x)
y = np.array([2.25,0.25,0.25,2.25])
print(y)
np.mean(y)
#output:
1.25
[2.25 0.25 0.25 2.25]
1.25

参考视频:哔哩哔哩——马士兵教育-杨淑娟

 

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python-函数-统计函数 - Python技术站

(0)
上一篇 2023年4月2日 下午4:51
下一篇 2023年4月2日

相关文章

  • Python-函数-字符串函数

    函数 1.字符串函数 #(1)add() 对两个数组的元素进行字符串连接 import numpy as np print(np.char.add([“xiaodu”],[“good”])) print(np.char.add([“xiaodu”,”dudu”],[“good”,”nice”]))  #output:[‘xiaodugood’] [‘xiao…

    Python开发 2023年4月2日
    00
  • python-数据描述与分析(1)

    数据描述与分析    在进行数据分析之前,我们需要做的事情是对数据有初步的了解,这个了解就涉及对行业的了解和对数据本身的敏感程度,通俗来说就是对数据的分布有大概的理解,此时我们需要工具进行数据的描述,观测数据的形状等;而后才是对数据进行建模分析,挖掘数据中隐藏的位置信息。目前在数据描述和简单分析方面做的比较好的是Pandas库。当然,它还需要结合我们之前提到…

    2023年4月2日
    00
  • python-绘图与可视化

      python 有许多可视化工具,但本书只介绍Matplotlib。Matplotlib是一种2D的绘图库,它可以支持硬拷贝和跨系统的交互,它可以在python脚本,IPython的交互环境下、Web应用程序中使用。该项目是由John Hunter 于2002年启动,其目的是为python构建MATLAB式的绘图接口。如果结合使用一种GUI工具包(如IPy…

    2023年4月2日
    00
  • python-数据描述与分析2(利用Pandas处理数据 缺失值的处理 数据库的使用)

    2.利用Pandas处理数据2.1 汇总计算当我们知道如何加载数据后,接下来就是如何处理数据,虽然之前的赋值计算也是一种计算,但是如果Pandas的作用就停留在此,那我们也许只是看到了它的冰山一角,它首先比较吸引人的作用是汇总计算 (1)基本的数学统计计算这里的基本计算指的是sum、mean等操作,主要是基于Series(也可能是来自DataFrame)进行…

    2023年4月2日
    00
合作推广
合作推广
分享本页
返回顶部