Opencv 使用差分金字塔提取高频成分

以下是关于Opencv使用差分金字塔提取高频成分的详细攻略。

Opencv使用差分金字塔提取高频成分基本原理

差分金字塔是一种常用的图像技术,用于提取图像的高频成分。具体实现方法包括:

  • 对图像进行高斯金字塔分解
  • 高斯金字塔的每一层进行差分操作
  • 对差分金字塔进行重构

差分金字塔可以用于图像的锐化、边缘检测等应用。

Opencv使用差分金字塔提取高频成分的使用方法

Opencv库提供 cv2.pyrUpcv2.pyrDown 函数,用于对图像进行高斯金字塔分解和重构。函数的基本语法如下:

dst = cv2.pyrUp(src[,[, dstsize[, borderType]]])
dst = cv2.pyrDown(src[, dst[, dstsize[, borderType]]])

其中,src 表示待处理图像,dst 表示输出图像,dstsize 表示输出图像的大小,borderType 表示边界类型。

示例说明

下面是两个Opencv使用差分金字塔提取高频成分的示例:

示例1:使用差分金字塔对图像进行锐化

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg')

# 对图像进行高斯金字塔分解
G = img.copy()
gpA = [G]
for i in range(6):
    G = cv2.pyrDown(G)
    gpA.append(G)

# 对高斯金字塔的每一层进行差分操作
lpA = [gpA[5]]
for i in range(5, 0, -1):
    GE = cv2.pyrUp(gpA[i])
    L = cv2.subtract(gpA[i - 1], GE)
    lpA.append(L)

# 对差分金字塔进行重构
LS = lpA[0]
for i in range(1, 6):
    LS = cv2.pyrUp(LS)
    LS = cv2.add(LS, lpA[i])

# 显示原始图像和锐化后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Sharpened Image', LS)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和锐化后图像。

示例2:使用差分金字塔对图像进行边缘检测

import cv2
import numpy as np

# 读取图像
img = cv2.imread('test.jpg')

# 对图像进行高斯金字塔分解
G = img.copy()
gpA = [G]
for i in range(6):
    G = cv2.pyrDown(G)
    gpA.append(G)

# 对高斯金字塔的每一层进行差分操作
lpA = [gpA[5]]
for i in range(5, 0, -1):
    GE = cv2.pyrUp(gpA[i])
    L = cv2.subtract(gpA[i - 1], GE)
    lpA.append(L)

# 对差分金字塔进行重构
LS = lpA[0]
for i in range(1, 6):
    LS = cv2.pyrUp(LS)
    LS = cv2.add(LS, lpA[i])

# 对重构后的图像进行边缘检测
gray = cv2.cvtColor(LS, cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray, 100, 200)

# 显示原始图像和边缘检测后的图像
cv2.imshow('Original Image', img)
cv2.imshow('Edge Detection Image', edges)
cv2.waitKey(0)
cv2.destroyAllWindows()

运行该代码,系统会显示原始图像和边缘检测后的图像。

结论

Opencv使用差分金字塔提取高频成分是一种常用的图像处理技术,用于提取图像的高频成分。通过 Opencv 中的 cv2.pyrUpcv2.pyrDown 函数,可以实现对图像进行高斯金字塔分解和重构。通过本介绍,应该已经了解 Opencv使用差分金字塔提取高频成分的基本原理、方法和两个示例说明,根据需要灵活使用。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 使用差分金字塔提取高频成分 - Python技术站

(0)
上一篇 2023年5月10日
下一篇 2023年5月10日

相关文章

  • Opencv Motion Filter

    OpenCV MotionFilter OpenCV MotionFilter是一种图像处理方法,可以用于模拟运动模糊效果。本文将介绍OpenCV MotionFilter的基本原理和使用方法,并提供两个示例。 OpenCV MotionFilter的基本原理 OpenCV MotionFilter是一种线性平滑滤波器,可以用于模拟运动模糊效果。运动糊的基本…

    python 2023年5月10日
    00
  • Opencv YCbCr+离散余弦变换+量化

    Opencv YCbCr+离散余弦变换+量化的完整攻略 Opencv YCbCr+离散余弦变换+量化是一种常用的图像处理技术,可以用于图像的压缩、特征提取操作。本文将详细讲解Opencv YCbCr+离散余弦变换+量化的完整攻略,包括基本原理、和两个示例说明。 Opencv YCr+离散余弦变换+量的基本原理 Opencv YCbCr+离散弦变换+量化是一种…

    python 2023年5月10日
    00
  • Opencv Hessian角点检测

    以下是关于Opencv Hessian角点检测的详细攻略。 Opencv Hessian角点检测基本原理 Hessian角点检测是一种常用的图像处理技术,用于检测图像中的角。Hessian角点检测的基本原理是通过计算图像的Hessian矩阵,找到矩阵的特征值和特征向量从而确定图像中的点。 Opencv库提供cv2.cornerHarris函数和cv2.cor…

    python 2023年5月10日
    00
  • Opencv 仿射变换放大缩小

    Opencv 仿射变换放大缩小是一种常见的图像处理技术,可以用于图像的缩放、旋转、平移等操作。本文将详细讲解Opencv 仿射变放大缩小的完整攻略,包括基本原理、使用方法和两个示例说明。 Opencv 仿射变换放大缩小的基本原理 Opencv 仿射变换放大缩小是一种基于仿射变换的图像处理技术,可以通过对图像进行平移、旋转、缩放等操作,实现图像的变换。仿射变换…

    python 2023年5月10日
    00
  • Opencv k-平均聚类算法第一步

    以下是关于Opencv k-平均聚类算法第一步的详细攻略。 Opencv k-平均聚类算法第一步基本原理 k-平均聚类算法是一种无监督学习算法,将数据集分成k个簇,每个簇包含最接近的数据点。该算法的基本思想是通过不断迭代,将点分配到最近的簇中,然后重新计算簇的中心点直到簇的中心点不再发生变化。 Opencv-平均聚类算法第一步的步骤 读取数据 随机初始化k个…

    python 2023年5月10日
    00
  • Opencv 伽玛校正

    OpenCV 伽马校正 OpenCV 伽马校正是一种用于图像处理和计算机视觉的重要工具,可以用于调整图像的亮度和对比度。本文将介绍OpenCV 伽马校正的基本原理和使用方法,并提供两个示例。 OpenCV 伽马校正的基本原理 OpenCV 伽马校正是一种线性变换,可以用于调整图像的亮度和对比度。伽马校正的基本原理是通过对图像像素值进行幂次变换,调整图像亮度和…

    python 2023年5月10日
    00
  • Opencv 使用零均值归一化交叉相关进行模式匹配

    以下是关于Opencv 使用零均值归一化交叉相关进行模式匹配的详细讲解。 Opencv 使用零均值归一化交叉相关进行模式匹配基本原理 Opencv 零均值归一化交叉相关进行模式匹配是一种常用的图像处理技术,可以用于在图像中查找指定的模式。具体实现方法包括: cv2.matchTemplate 函数:用于对图像进行模板匹配操作。 cv2.minMaxLoc 函…

    python 2023年5月10日
    00
  • Opencv通道交换

    OpenCV通道交换 OpenCV通道交换是指将图像的通道顺序进行调整,可以用于图像处理和分析中的各种应用场景。通道交换可以通过OpenCV库中的函数实现,本文将介绍通道交换的基本概念和使用方法。 通道交换的基本概念 在OpenCV中,图像通常以BGR或RGB的顺序存储的,即每个像素点由三个通道组成,分别表示蓝色、绿色和红色。通道交换是指将这三个通道的顺序进…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部