Anaconda+Pycharm+Pytorch虚拟环境创建(各种包安装保姆级教学)

yizhihongxing

以下是Anaconda+Pycharm+Pytorch虚拟环境创建的完整攻略,包括两个示例说明。

1. 安装Anaconda

首先需要安装Anaconda,可以从官网下载对应的安装包进行安装。安装完成后,可以在终端中输入以下命令检查是否安装成功:

conda --version

如果输出了版本号,则表示安装成功。

2. 创建虚拟环境

在使用PyTorch时,建议使用虚拟环境来管理依赖包。以下是创建虚拟环境的步骤:

  1. 打开Anaconda Prompt

  2. 创建虚拟环境

bash
conda create --name myenv python=3.8

其中,myenv是虚拟环境的名称,python=3.8表示使用Python 3.8版本。

  1. 激活虚拟环境

bash
conda activate myenv

激活虚拟环境后,所有的依赖包都将安装在该虚拟环境中。

  1. 安装PyTorch

bash
conda install pytorch torchvision torchaudio -c pytorch

以上命令将安装PyTorch及其相关依赖包。

  1. 安装其他依赖包

如果需要安装其他依赖包,可以使用以下命令:

bash
conda install package_name

其中,package_name是需要安装的依赖包名称。

  1. 退出虚拟环境

bash
conda deactivate

退出虚拟环境后,将不再使用该虚拟环境中的依赖包。

3. 在Pycharm中配置虚拟环境

在Pycharm中,可以使用虚拟环境来管理依赖包。以下是在Pycharm中配置虚拟环境的步骤:

  1. 打开Pycharm

  2. 创建项目

在Pycharm中创建一个新项目,并选择使用已有的虚拟环境。

  1. 配置虚拟环境

在Pycharm中,可以通过以下步骤配置虚拟环境:

  • 点击菜单栏中的“File” -> “Settings” -> “Project: project_name” -> “Python Interpreter”。
  • 点击右上角的“Add”按钮,选择“Existing environment”。
  • 在“Interpreter”一栏中,选择已经创建好的虚拟环境的Python解释器路径。
  • 点击“OK”按钮保存配置。

  • 安装依赖包

在Pycharm中,可以使用以下命令安装依赖包:

bash
pip install package_name

其中,package_name是需要安装的依赖包名称。

4. 示例1:使用PyTorch进行图像分类

以下是使用PyTorch进行图像分类的示例代码:

import torch
import torchvision
import torchvision.transforms as transforms

# 加载数据集
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 定义神经网络
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

# 定义损失函数和优化器
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练网络
for epoch in range(2):  # 多批次循环

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # 获取输入
        inputs, labels = data

        # 梯度清零
        optimizer.zero_grad()

        # 正向传播,反向传播,优化
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 打印统计信息
        running_loss += loss.item()
        if i % 2000 == 1999:    # 每2000批次打印一次
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 测试网络
dataiter = iter(testloader)
images, labels = dataiter.next()

# 输出图片
import matplotlib.pyplot as plt
import numpy as np

def imshow(img):
    img = img / 2 + 0.5     # 非标准化
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

# 预测结果
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))

5. 示例2:使用PyTorch进行目标检测

以下是使用PyTorch进行目标检测的示例代码:

import torch
import torchvision
import torchvision.transforms as transforms

# 加载数据集
transform = transforms.Compose(
    [transforms.ToTensor(),
     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])

trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
                                        download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,
                                          shuffle=True, num_workers=2)

testset = torchvision.datasets.CIFAR10(root='./data', train=False,
                                       download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
                                         shuffle=False, num_workers=2)

classes = ('plane', 'car', 'bird', 'cat',
           'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

# 定义神经网络
import torch.nn as nn
import torch.nn.functional as F


class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(3, 6, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.conv2 = nn.Conv2d(6, 16, 5)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 10)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x


net = Net()

# 定义损失函数和优化器
import torch.optim as optim

criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

# 训练网络
for epoch in range(2):  # 多批次循环

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # 获取输入
        inputs, labels = data

        # 梯度清零
        optimizer.zero_grad()

        # 正向传播,反向传播,优化
        outputs = net(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # 打印统计信息
        running_loss += loss.item()
        if i % 2000 == 1999:    # 每2000批次打印一次
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

# 测试网络
dataiter = iter(testloader)
images, labels = dataiter.next()

# 输出图片
import matplotlib.pyplot as plt
import numpy as np

def imshow(img):
    img = img / 2 + 0.5     # 非标准化
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1, 2, 0)))
    plt.show()


imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(4)))

# 预测结果
outputs = net(images)
_, predicted = torch.max(outputs, 1)
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
                              for j in range(4)))

以上就是Anaconda+Pycharm+PyTorch虚拟环境创建的完整攻略,包括两个示例说明。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Anaconda+Pycharm+Pytorch虚拟环境创建(各种包安装保姆级教学) - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • pytorch_pretrained_bert如何将tensorflow模型转化为pytorch模型

    当我们需要在PyTorch中使用BERT模型时,我们可以使用pytorch_pretrained_bert库来加载预训练的BERT模型。但是,如果我们有一个在TensorFlow中训练的BERT模型,我们需要将其转换为PyTorch模型。下面是将TensorFlow模型转换为PyTorch模型的完整攻略,包括两个示例。 示例1:使用convert_tf_ch…

    PyTorch 2023年5月15日
    00
  • 莫烦PyTorch学习笔记(六)——批处理

    1.要点 Torch 中提供了一种帮你整理你的数据结构的好东西, 叫做 DataLoader, 我们能用它来包装自己的数据, 进行批训练. 而且批训练可以有很多种途径。 2.DataLoader DataLoader 是 torch 给你用来包装你的数据的工具. 所以你要讲自己的 (numpy array 或其他) 数据形式装换成 Tensor, 然后再放进…

    PyTorch 2023年4月8日
    00
  • Pytorch划分数据集的方法:torch.utils.data.Subset

        Pytorch提供的对数据集进行操作的函数详见:https://pytorch.org/docs/master/data.html#torch.utils.data.SubsetRandomSampler torch的这个文件包含了一些关于数据集处理的类: class torch.utils.data.Dataset: 一个抽象类, 所有其他类的数据…

    PyTorch 2023年4月6日
    00
  • PyTorch的自适应池化Adaptive Pooling实例

    PyTorch的自适应池化Adaptive Pooling实例 在 PyTorch 中,自适应池化(Adaptive Pooling)是一种常见的池化操作,它可以根据输入的大小自动调整池化的大小。本文将详细讲解 PyTorch 中自适应池化的实现方法,并提供两个示例说明。 1. 二维自适应池化 在 PyTorch 中,我们可以使用 nn.AdaptiveAv…

    PyTorch 2023年5月16日
    00
  • 简述python&pytorch 随机种子的实现

    在Python和PyTorch中,随机种子用于控制随机数生成器的输出。以下是两个示例说明,介绍如何在Python和PyTorch中实现随机种子。 示例1:在Python中实现随机种子 在Python中,可以使用random模块来实现随机种子。以下是一个示例: import random # 设置随机种子 random.seed(1234) # 生成随机数 p…

    PyTorch 2023年5月16日
    00
  • 加快pytorch训练速度

    num_workers num_worker=0表示只用主进程读取数据, num_worker=4/8表明使用额外的4/8子进程读取数据 一般来说,增大num_worker可以增加GPU的利用率,从而加快训练的速度。 但是有时候即使增大num_worker也无法提高GPU利用率,这是因为训练的瓶颈在IO 多个小文件->单个大文件 使用hdf5文件:缺点…

    PyTorch 2023年4月8日
    00
  • 人工智能学习Pytorch教程Tensor基本操作示例详解

    人工智能学习Pytorch教程Tensor基本操作示例详解 本教程主要介绍了如何使用PyTorch中的Tensor进行基本操作,包括创建Tensor、访问Tensor和操作Tensor。同时,本教程还提供了两个示例,分别是使用Tensor进行线性回归和卷积操作。 创建Tensor 在PyTorch中,我们可以使用torch.Tensor()函数来创建一个Te…

    PyTorch 2023年5月15日
    00
  • pytorch如何获得模型的计算量和参数量

    PyTorch如何获得模型的计算量和参数量 在深度学习中,模型的计算量和参数量是两个重要的指标,可以帮助我们评估模型的复杂度和性能。在本文中,我们将介绍如何使用PyTorch来获得模型的计算量和参数量,并提供两个示例,分别是计算卷积神经网络的计算量和参数量。 计算卷积神经网络的计算量和参数量 以下是一个示例,展示如何计算卷积神经网络的计算量和参数量。 imp…

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部