1.对于简单的定制操作,可以通过使用layers.core.Lambda层来完成。该方法的适用情况:仅对流经该层的数据做个变换,而这个变换本身没有需要学习的参数.
# 切片后再分别进行embedding和average pooling import numpy as np from keras.models import Sequential from keras.layers import Dense, Activation,Reshape from keras.layers import merge from keras.utils import plot_model from keras.layers import * from keras.models import Model def get_slice(x, index): return x[:, index] keep_num = 3 field_lens = 90 input_field = Input(shape=(keep_num, field_lens)) avg_pools = [] for n in range(keep_num): block = Lambda(get_slice,output_shape=(1,field_lens),arguments={'index':n})(input_field) x_emb = Embedding(input_dim=100, output_dim=200, input_length=field_lens)(block) x_avg = GlobalAveragePooling1D()(x_emb) avg_pools.append(x_avg) output = concatenate([p for p in avg_pools]) model = Model(input_field, output) plot_model(model, to_file='model/lambda.png',show_shapes=True) plt.figure(figsize=(21, 12)) im = plt.imread('model/lambda.png') plt.imshow(im)
这里用Lambda定义了一个对张量进行切片操作的层
2.对于具有可训练权重的定制层,需要自己来实现。
from keras import backend as K from keras.engine.topology import Layer import numpy as np class MyLayer(Layer): def __init__(self, output_dim, **kwargs): self.output_dim = output_dim super(MyLayer, self).__init__(**kwargs) def build(self, input_shape): # Create a trainable weight variable for this layer. self.kernel = self.add_weight(name='kernel', shape=(input_shape[1], self.output_dim), initializer='uniform', trainable=True) super(MyLayer, self).build(input_shape) # Be sure to call this somewhere! def call(self, x): return K.dot(x, self.kernel) def compute_output_shape(self, input_shape): return (input_shape[0], self.output_dim)
参考:
Writing your own Keras layers Keras官方文档,中文文档
keras Lambda自定义层实现数据的切片,Lambda传参数
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Keras 自定义层 - Python技术站