一 背景知识

    爬虫的本质就是一个socket客户端与服务端的通信过程,如果我们有多个url待爬取,只用一个线程且采用串行的方式执行,那只能等待爬取一个结束后才能继续下一个,效率会非常低。

需要强调的是:对于单线程下串行N个任务,并不完全等同于低效,如果这N个任务都是纯计算的任务,那么该线程对cpu的利用率仍然会很高,之所以单线程下串行多个爬虫任务低效,是因为爬虫任务是明显的IO密集型程序。

关于IO模型详见链接:http://www.cnblogs.com/linhaifeng/articles/7454717.html

    那么该如何提高爬取性能呢?且看下述概念

二 同步、异步、回调机制

1、同步调用:即提交一个任务后就在原地等待任务结束,等到拿到任务的结果后再继续下一行代码,效率低下

import requests

def parse_page(res):
    print('解析 %s' %(len(res)))

def get_page(url):
    print('下载 %s' %url)
    response=requests.get(url)
    if response.status_code == 200:
        return response.text

urls=['https://www.baidu.com/','http://www.sina.com.cn/','https://www.python.org']
for url in urls:
    res=get_page(url) #调用一个任务,就在原地等待任务结束拿到结果后才继续往后执行
    parse_page(res)

同步调用

2、一个简单的解决方案:多线程或多进程

#在服务器端使用多线程(或多进程)。多线程(或多进程)的目的是让每个连接都拥有独立的线程(或进程),这样任何一个连接的阻塞都不会影响其他的连接。

#IO密集型程序应该用多线程
import requests
from threading import Thread,current_thread

def parse_page(res):
    print('%s 解析 %s' %(current_thread().getName(),len(res)))

def get_page(url,callback=parse_page):
    print('%s 下载 %s' %(current_thread().getName(),url))
    response=requests.get(url)
    if response.status_code == 200:
        callback(response.text)

if __name__ == '__main__':
    urls=['https://www.baidu.com/','http://www.sina.com.cn/','https://www.python.org']
    for url in urls:
        t=Thread(target=get_page,args=(url,))
        t.start()

多进程或多线程