caffe的python接口生成配置文件学习

下面是关于“caffe的python接口生成配置文件学习”的完整攻略。

问题描述

在使用Caffe进行深度学习模型训练时,需要编写配置文件来定义网络结构、数据输入和训练参数等。那么,如何使用Caffe的Python接口来生成配置文件?如何定义网络结构和训练参数?

解决方法

以下是使用Caffe的Python接口生成配置文件的方法:

  1. 首先,导入必要的库:

python
import caffe
from caffe import layers as L, params as P

  1. 然后,定义网络结构:

python
def my_net(lmdb, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1./255), ntop=2)
n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.fc1, in_place=True)
n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()

在上面的代码中,我们定义了一个名为my_net的函数,用于生成网络结构。该网络包含一个数据层、两个卷积层、两个池化层、一个全连接层、一个ReLU层和一个SoftmaxWithLoss层。其中,数据层使用LMDB格式的数据源,卷积层和全连接层使用Xavier初始化方法,ReLU层使用原地计算方式。

  1. 接着,定义训练参数:

python
def my_solver(train_net_path, test_net_path):
s = caffe_pb2.SolverParameter()
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500
s.test_iter.append(100)
s.max_iter = 10000
s.base_lr = 0.01
s.momentum = 0.9
s.weight_decay = 0.0005
s.lr_policy = 'step'
s.stepsize = 5000
s.gamma = 0.1
s.display = 100
s.snapshot = 5000
s.snapshot_prefix = 'lenet'
s.type = 'SGD'
return s

在上面的代码中,我们定义了一个名为my_solver的函数,用于生成训练参数。该参数包括训练网络路径、测试网络路径、测试间隔、最大迭代次数、学习率、动量、权重衰减、学习率策略、步长、衰减因子、显示间隔、快照间隔、快照前缀和优化器类型等。

  1. 最后,生成配置文件:

python
with open('train.prototxt', 'w') as f:
f.write(str(my_net('train_lmdb', 64)))
with open('test.prototxt', 'w') as f:
f.write(str(my_net('test_lmdb', 100)))
with open('solver.prototxt', 'w') as f:
f.write(str(my_solver('train.prototxt', 'test.prototxt')))

在上面的代码中,我们使用Python的with语句打开三个文件,分别写入训练网络、测试网络和训练参数的配置信息。其中,训练网络和测试网络的数据源分别为train_lmdb和test_lmdb,批量大小分别为64和100。

以下是两个示例说明:

  1. 使用Caffe的Python接口生成LeNet网络的配置文件

首先,定义LeNet网络结构:

python
def lenet(lmdb, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1./255), ntop=2)
n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.fc1, in_place=True)
n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()

然后,定义训练参数:

python
def lenet_solver(train_net_path, test_net_path):
s = caffe_pb2.SolverParameter()
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500
s.test_iter.append(100)
s.max_iter = 10000
s.base_lr = 0.01
s.momentum = 0.9
s.weight_decay = 0.0005
s.lr_policy = 'step'
s.stepsize = 5000
s.gamma = 0.1
s.display = 100
s.snapshot = 5000
s.snapshot_prefix = 'lenet'
s.type = 'SGD'
return s

最后,生成配置文件:

python
with open('train.prototxt', 'w') as f:
f.write(str(lenet('train_lmdb', 64)))
with open('test.prototxt', 'w') as f:
f.write(str(lenet('test_lmdb', 100)))
with open('solver.prototxt', 'w') as f:
f.write(str(lenet_solver('train.prototxt', 'test.prototxt')))

  1. 使用Caffe的Python接口生成AlexNet网络的配置文件

首先,定义AlexNet网络结构:

python
def alexnet(lmdb, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1./255), ntop=2)
n.conv1 = L.Convolution(n.data, kernel_size=11, stride=4, num_output=96, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.conv1, in_place=True)
n.pool1 = L.Pooling(n.relu1, kernel_size=3, stride=2, pool=P.Pooling.MAX)
n.norm1 = L.LRN(n.pool1, local_size=5, alpha=0.0001, beta=0.75)
n.conv2 = L.Convolution(n.norm1, kernel_size=5, stride=1, pad=2, num_output=256, weight_filler=dict(type='xavier'))
n.relu2 = L.ReLU(n.conv2, in_place=True)
n.pool2 = L.Pooling(n.relu2, kernel_size=3, stride=2, pool=P.Pooling.MAX)
n.norm2 = L.LRN(n.pool2, local_size=5, alpha=0.0001, beta=0.75)
n.conv3 = L.Convolution(n.norm2, kernel_size=3, stride=1, pad=1, num_output=384, weight_filler=dict(type='xavier'))
n.relu3 = L.ReLU(n.conv3, in_place=True)
n.conv4 = L.Convolution(n.relu3, kernel_size=3, stride=1, pad=1, num_output=384, weight_filler=dict(type='xavier'))
n.relu4 = L.ReLU(n.conv4, in_place=True)
n.conv5 = L.Convolution(n.relu4, kernel_size=3, stride=1, pad=1, num_output=256, weight_filler=dict(type='xavier'))
n.relu5 = L.ReLU(n.conv5, in_place=True)
n.pool5 = L.Pooling(n.relu5, kernel_size=3, stride=2, pool=P.Pooling.MAX)
n.fc6 = L.InnerProduct(n.pool5, num_output=4096, weight_filler=dict(type='xavier'))
n.relu6 = L.ReLU(n.fc6, in_place=True)
n.drop6 = L.Dropout(n.relu6, dropout_ratio=0.5, in_place=True)
n.fc7 = L.InnerProduct(n.drop6, num_output=4096, weight_filler=dict(type='xavier'))
n.relu7 = L.ReLU(n.fc7, in_place=True)
n.drop7 = L.Dropout(n.relu7, dropout_ratio=0.5, in_place=True)
n.score = L.InnerProduct(n.drop7, num_output=1000, weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()

然后,定义训练参数:

python
def alexnet_solver(train_net_path, test_net_path):
s = caffe_pb2.SolverParameter()
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500
s.test_iter.append(100)
s.max_iter = 10000
s.base_lr = 0.01
s.momentum = 0.9
s.weight_decay = 0.0005
s.lr_policy = 'step'
s.stepsize = 5000
s.gamma = 0.1
s.display = 100
s.snapshot = 5000
s.snapshot_prefix = 'alexnet'
s.type = 'SGD'
return s

最后,生成配置文件:

python
with open('train.prototxt', 'w') as f:
f.write(str(alexnet('train_lmdb', 64)))
with open('test.prototxt', 'w') as f:
f.write(str(alexnet('test_lmdb', 100)))
with open('solver.prototxt', 'w') as f:
f.write(str(alexnet_solver('train.prototxt', 'test.prototxt')))

结论

在本攻略中,我们介绍了使用Caffe的Python接口生成配置文件的方法,并提供了两个示例说明。可以根据具体的需求来定义网络结构和训练参数,并根据需要调整数据源、批量大小和其他参数。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:caffe的python接口生成配置文件学习 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • caffe 根据txt生成多标签LMDB数据

    已经准备好train.txt, test.txt文件, 格式如下 此处有坑, 如果是windows下生成txt, 换行符为rn, 需要替换成 n才能在linux运行.可以使用sed -i “s/s*$//g” filename统一去掉, 具体参考除去文件中显示的^M符号 已经编译好了支持多标签的caffe, 具体见多标签caffe重新编译 2. 编辑生成lm…

    2023年4月8日
    00
  • TitanX Server安装Caffe

    服务器是Ubuntu Server 16.04,可以ssh和vnc连接。 安装caffe步骤 1. 安装anaconda2:这里不能用3,不知什么原因,cmake错误,无法生成pycaffe 2. 安装opencv:   a)直接用conda里的opencv比较方便,也不会出现少tiff的问题,命令 conda install opencv   b)cond…

    Caffe 2023年4月8日
    00
  • 运行caffe时遇到cannot create Cublas handle. Cublas won’t be available.错误

    在Ubuntu16.04下,已安装CUDA8.0和cudnn5.1,编译caffe通过,make runtest通过。但在使用caffe进行网络训练时,发生错误如下: 解决方法:这是显卡驱动版本过高的原因。本人的1080Ti显卡使用NVIDIA-Linux-x86_64-384.69驱动就会出现上述问题,换成NVIDIA-Linux-x86_64-375.8…

    2023年4月8日
    00
  • [caffe] 史上最透彻的lenet.prototxt解析

    // 输入层的定义: name: “LeNet” (网络的名字)   layer { (定义一个网络层)   name: “data” (网络层的名字为 data)   type: “Input” (网络层的类型,输入)   top: “data” (该网络层的输出叫 data )   input_param { shape: { dim: 64 dim: …

    Caffe 2023年4月5日
    00
  • Caffe参数交换源码分析

    对境准备:对于多个GPU而言,一台机器2个GPU,参数交换的流程图:          参数交换从main()进入train()函数,在train函数中找到对应源码为: 1 . . . . . 2 if (gpus.size() > 1) { 3 caffe::P2PSync<float> sync(solver, NULL, solver…

    2023年4月6日
    00
  • caffe中的Local Response Normalization (LRN)有什么用,和激活函数区别

    http://stats.stackexchange.com/questions/145768/importance-of-local-response-normalization-in-cnn caffe 解释: The local response normalization layer performs a kind of “lateral inhib…

    Caffe 2023年4月8日
    00
  • Caffe编译错误整理

    今天编译caffe-ssd遇到编译错误: 1   Line 9690: 3>E:GitHubcaffe-ssd-windowssrccaffelayer_factory.cpp(141): error C2061: syntax error: identifier ‘SliceLayer’ 2 Line 9690: 3>E:GitHubcaffe…

    2023年4月5日
    00
  • caffe 训练过程中输出log日志,并可视化loss和accuracy曲线

    使用Caffe自带的tools来产生loss和accuracy曲线 举例说明: 本人训练时,使用的文件如下: [ trainsh->solve.py->solver.prototxt->train_val.prototxt ] 1. 训练过程中保存日志 执行如下命令: bash ./train.sh 2>&1 |tee log…

    2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部