caffe的python接口生成配置文件学习

下面是关于“caffe的python接口生成配置文件学习”的完整攻略。

问题描述

在使用Caffe进行深度学习模型训练时,需要编写配置文件来定义网络结构、数据输入和训练参数等。那么,如何使用Caffe的Python接口来生成配置文件?如何定义网络结构和训练参数?

解决方法

以下是使用Caffe的Python接口生成配置文件的方法:

  1. 首先,导入必要的库:

python
import caffe
from caffe import layers as L, params as P

  1. 然后,定义网络结构:

python
def my_net(lmdb, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1./255), ntop=2)
n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.fc1, in_place=True)
n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()

在上面的代码中,我们定义了一个名为my_net的函数,用于生成网络结构。该网络包含一个数据层、两个卷积层、两个池化层、一个全连接层、一个ReLU层和一个SoftmaxWithLoss层。其中,数据层使用LMDB格式的数据源,卷积层和全连接层使用Xavier初始化方法,ReLU层使用原地计算方式。

  1. 接着,定义训练参数:

python
def my_solver(train_net_path, test_net_path):
s = caffe_pb2.SolverParameter()
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500
s.test_iter.append(100)
s.max_iter = 10000
s.base_lr = 0.01
s.momentum = 0.9
s.weight_decay = 0.0005
s.lr_policy = 'step'
s.stepsize = 5000
s.gamma = 0.1
s.display = 100
s.snapshot = 5000
s.snapshot_prefix = 'lenet'
s.type = 'SGD'
return s

在上面的代码中,我们定义了一个名为my_solver的函数,用于生成训练参数。该参数包括训练网络路径、测试网络路径、测试间隔、最大迭代次数、学习率、动量、权重衰减、学习率策略、步长、衰减因子、显示间隔、快照间隔、快照前缀和优化器类型等。

  1. 最后,生成配置文件:

python
with open('train.prototxt', 'w') as f:
f.write(str(my_net('train_lmdb', 64)))
with open('test.prototxt', 'w') as f:
f.write(str(my_net('test_lmdb', 100)))
with open('solver.prototxt', 'w') as f:
f.write(str(my_solver('train.prototxt', 'test.prototxt')))

在上面的代码中,我们使用Python的with语句打开三个文件,分别写入训练网络、测试网络和训练参数的配置信息。其中,训练网络和测试网络的数据源分别为train_lmdb和test_lmdb,批量大小分别为64和100。

以下是两个示例说明:

  1. 使用Caffe的Python接口生成LeNet网络的配置文件

首先,定义LeNet网络结构:

python
def lenet(lmdb, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1./255), ntop=2)
n.conv1 = L.Convolution(n.data, kernel_size=5, num_output=20, weight_filler=dict(type='xavier'))
n.pool1 = L.Pooling(n.conv1, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.conv2 = L.Convolution(n.pool1, kernel_size=5, num_output=50, weight_filler=dict(type='xavier'))
n.pool2 = L.Pooling(n.conv2, kernel_size=2, stride=2, pool=P.Pooling.MAX)
n.fc1 = L.InnerProduct(n.pool2, num_output=500, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.fc1, in_place=True)
n.score = L.InnerProduct(n.relu1, num_output=10, weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()

然后,定义训练参数:

python
def lenet_solver(train_net_path, test_net_path):
s = caffe_pb2.SolverParameter()
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500
s.test_iter.append(100)
s.max_iter = 10000
s.base_lr = 0.01
s.momentum = 0.9
s.weight_decay = 0.0005
s.lr_policy = 'step'
s.stepsize = 5000
s.gamma = 0.1
s.display = 100
s.snapshot = 5000
s.snapshot_prefix = 'lenet'
s.type = 'SGD'
return s

最后,生成配置文件:

python
with open('train.prototxt', 'w') as f:
f.write(str(lenet('train_lmdb', 64)))
with open('test.prototxt', 'w') as f:
f.write(str(lenet('test_lmdb', 100)))
with open('solver.prototxt', 'w') as f:
f.write(str(lenet_solver('train.prototxt', 'test.prototxt')))

  1. 使用Caffe的Python接口生成AlexNet网络的配置文件

首先,定义AlexNet网络结构:

python
def alexnet(lmdb, batch_size):
n = caffe.NetSpec()
n.data, n.label = L.Data(batch_size=batch_size, backend=P.Data.LMDB, source=lmdb, transform_param=dict(scale=1./255), ntop=2)
n.conv1 = L.Convolution(n.data, kernel_size=11, stride=4, num_output=96, weight_filler=dict(type='xavier'))
n.relu1 = L.ReLU(n.conv1, in_place=True)
n.pool1 = L.Pooling(n.relu1, kernel_size=3, stride=2, pool=P.Pooling.MAX)
n.norm1 = L.LRN(n.pool1, local_size=5, alpha=0.0001, beta=0.75)
n.conv2 = L.Convolution(n.norm1, kernel_size=5, stride=1, pad=2, num_output=256, weight_filler=dict(type='xavier'))
n.relu2 = L.ReLU(n.conv2, in_place=True)
n.pool2 = L.Pooling(n.relu2, kernel_size=3, stride=2, pool=P.Pooling.MAX)
n.norm2 = L.LRN(n.pool2, local_size=5, alpha=0.0001, beta=0.75)
n.conv3 = L.Convolution(n.norm2, kernel_size=3, stride=1, pad=1, num_output=384, weight_filler=dict(type='xavier'))
n.relu3 = L.ReLU(n.conv3, in_place=True)
n.conv4 = L.Convolution(n.relu3, kernel_size=3, stride=1, pad=1, num_output=384, weight_filler=dict(type='xavier'))
n.relu4 = L.ReLU(n.conv4, in_place=True)
n.conv5 = L.Convolution(n.relu4, kernel_size=3, stride=1, pad=1, num_output=256, weight_filler=dict(type='xavier'))
n.relu5 = L.ReLU(n.conv5, in_place=True)
n.pool5 = L.Pooling(n.relu5, kernel_size=3, stride=2, pool=P.Pooling.MAX)
n.fc6 = L.InnerProduct(n.pool5, num_output=4096, weight_filler=dict(type='xavier'))
n.relu6 = L.ReLU(n.fc6, in_place=True)
n.drop6 = L.Dropout(n.relu6, dropout_ratio=0.5, in_place=True)
n.fc7 = L.InnerProduct(n.drop6, num_output=4096, weight_filler=dict(type='xavier'))
n.relu7 = L.ReLU(n.fc7, in_place=True)
n.drop7 = L.Dropout(n.relu7, dropout_ratio=0.5, in_place=True)
n.score = L.InnerProduct(n.drop7, num_output=1000, weight_filler=dict(type='xavier'))
n.loss = L.SoftmaxWithLoss(n.score, n.label)
return n.to_proto()

然后,定义训练参数:

python
def alexnet_solver(train_net_path, test_net_path):
s = caffe_pb2.SolverParameter()
s.train_net = train_net_path
s.test_net.append(test_net_path)
s.test_interval = 500
s.test_iter.append(100)
s.max_iter = 10000
s.base_lr = 0.01
s.momentum = 0.9
s.weight_decay = 0.0005
s.lr_policy = 'step'
s.stepsize = 5000
s.gamma = 0.1
s.display = 100
s.snapshot = 5000
s.snapshot_prefix = 'alexnet'
s.type = 'SGD'
return s

最后,生成配置文件:

python
with open('train.prototxt', 'w') as f:
f.write(str(alexnet('train_lmdb', 64)))
with open('test.prototxt', 'w') as f:
f.write(str(alexnet('test_lmdb', 100)))
with open('solver.prototxt', 'w') as f:
f.write(str(alexnet_solver('train.prototxt', 'test.prototxt')))

结论

在本攻略中,我们介绍了使用Caffe的Python接口生成配置文件的方法,并提供了两个示例说明。可以根据具体的需求来定义网络结构和训练参数,并根据需要调整数据源、批量大小和其他参数。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:caffe的python接口生成配置文件学习 - Python技术站

(0)
上一篇 2023年5月16日
下一篇 2023年5月16日

相关文章

  • caffe中使用python自定义层出现protobuf版本不对

    1. 编译问题  先执行  sudo easy_install setproctitle 打开Makefile.config, 反注释:WITH_PYTHON_LAYER := 1 执行如下命令,即可重新编译环境。(支持python自定义层的caffe环境。) sudo make clean sudo make -j4 sudo make pycaffe s…

    Caffe 2023年4月8日
    00
  • 深度学习参数调优杂记+caffe训练时的问题+dropout/batch Normalization

    转自https://www.cnblogs.com/maohai/p/6453417.html 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1、学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间。步长的选择比较麻烦。步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1;到…

    2023年4月8日
    00
  • Caffe训练cafir10

    安装Cygwin 可以执行.sh脚本 cd caffe-master/data/cifar10 get_cifar10 下载下来的文件列表 batches.meta.txt data_batch_1.bin data_batch_2.bin data_batch_3.bin data_batch_4.bin data_batch_5.bin test_bat…

    2023年4月5日
    00
  • CAFFE中训练与使用阶段网络设计的不同

    神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY)。 但是当我们真正要使用训练好的数据时,我们需要的是网络给我们输入结果,对于分类问题,我们需要获得分类结果,如下右图最后一层我们得到 的是概率,我们不需要训练及测试阶段的LOSS,A…

    2023年4月8日
    00
  • Pytorch_模型转Caffe(二)解析Pytorch模型*.pth

    目录 Pytorch_模型转Caffe(二)解析Pytorch模型*.pth 1. Pytorch模型保存于读取 a. 保存、加载权重 b.保存、加载网络和权重 2. Pytorch模型结构 1). summary查看网络整体结构 2). net.state_dict()解析权重值 3). net.named_parameters()获取layer和weig…

    Caffe 2023年4月8日
    00
  • Caffe的Solver参数设置

    http://caffe.berkeleyvision.org/tutorial/solver.html solver是通过协调前向-反向传播的参数更新来控制参数优化的。一个模型的学习是通过Solver来监督优化和参数更新,以及通过Net来产生loss和梯度完成的。 Caffe提供的优化方法有: Stochastic Gradient Descent (ty…

    Caffe 2023年4月8日
    00
  • caffe tutorial

    caffe official tutorial: https://caffe.berkeleyvision.org/tutorial/net_layer_blob.html   blobs, Layers, and Nets: anatomy of a caffe model   深度网络是一个由多个部件组成的模型,它能表征一系列作用于一堆数据的全连接层。这…

    Caffe 2023年4月6日
    00
  • Ubuntu16.04CPU下安装caffe的艰苦历程

    我选用的是anaconda安装,符上我参照的三个有用的教程。 1 http://www.linuxdiyf.com/linux/22442.html 主要讲anaconda的安装和python路径配置 2 https://www.linuxidc.com/Linux/2016-09/135034.htm 详细的教程,具体到每一步该做什么,虽然不是anacon…

    Caffe 2023年4月8日
    00
合作推广
合作推广
分享本页
返回顶部