Opencv 色彩追踪 形态学处理

OpenCV 中的色彩追踪形态学处理是一种图像处理技术,它可以通过对图像进行形态学处理来实现对特定颜色的追踪。在 OpenCV 中,可以使用 cv2.inRange() 函数来实现色彩追踪,使用形态学处理函数来对图像进行处理。

使用 cv2.inRange() 函数的基本语法如下:

mask = cv2.inRange(image, lower, upper)

其中,image 是输入图像,lower 和 upper 是颜色的下限和上限。

以下是两个示例说明:

示例一:使用色彩追踪形态学处理追踪红色物体

要使用色彩追踪形态学处理追踪红色物体,可以使用以下代码:

import cv2
import numpy as np

# 读取视频
cap = cv2.VideoCapture(0)

while True:
    # 读取帧
    ret, frame = cap.read()

    # 转换颜色空间
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    # 定义红色范围
    lower_red = np.array([0, 50, 50])
    upper_red = np.array([10, 255, 255])
    mask1 = cv2.inRange(hsv, lower_red, upper_red)

    lower_red = np.array([170, 50, 50])
    upper_red = np.array([180, 255, 255])
    mask2 = cv2.inRange(hsv, lower_red, upper_red)

    # 合并掩码
    mask = mask1 + mask2

    # 形态学处理
    kernel = np.ones((5, 5), np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

    # 查找轮廓
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # 绘制轮廓
    for cnt in contours:
        area = cv2.contourArea(cnt)
        if area > 500:
            x, y, w, h = cv2.boundingRect(cnt)
            cv2.rectangle(frame, (x, y), (x+w, y+h), (0, 255, 0), 2)

    # 显示图像
    cv2.imshow('frame', frame)
    cv2.imshow('mask', mask)

    # 按下 q 键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

这将打开摄像头并追踪红色物体。最终结果将在窗口中。

示例二:使用色彩追踪形态学处理进行手写数字识别

要使用色彩追踪形态学处理进行手写数字识别,可以使用以下代码:

import cv2
import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
from sklearn.neural_network import MLPClassifier

# 加载手写数字数据集
digits = load_digits()

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target, test_size=0.2, random_state=0)

# 训练神经网络模型
clf = MLPClassifier(hidden_layer_sizes=(100,), max_iter=500, alpha=1e-4, solver='sgd', verbose=10, tol=1e-4, random_state=1, learning_rate_init=.1)
clf.fit(X_train, y_train)

# 读取视频
cap = cv2.VideoCapture(0)

while True:
    # 读取帧
    ret, frame = cap.read()

    # 转换颜色空间
    hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)

    # 定义蓝色范围
    lower_blue = np.array([110, 50, 50])
    upper_blue = np.array([130, 255, 255])
    mask = cv2.inRange(hsv, lower_blue, upper_blue)

    # 形态学处理
    kernel = np.ones((5, 5), np.uint8)
    mask = cv2.morphologyEx(mask, cv2.MORPH_OPEN, kernel)
    mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

    # 查找轮廓
    contours, hierarchy = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)

    # 预测数字
    for cnt in contours:
        x, y, w, h = cv2.boundingRect(cnt)
        digit = mask[y:y+h, x:x+w]
        digit = cv2.resize(digit, (8, 8))
        digit = digit.reshape(1, -1)
        digit = digit / 16.0
        pred = clf.predict(digit)
        cv2.putText(frame, str(int(pred[0])), (x, y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

    # 显示图像
    cv2.imshow('frame', frame)
    cv2.imshow('mask', mask)

    # 按下 q 键退出
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# 释放资源
cap.release()
cv2.destroyAllWindows()

这将打开摄像头并使用色彩追踪形态学处理进行手写数字识别。最终结果将在窗口中。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Opencv 色彩追踪 形态学处理 - Python技术站

(0)
上一篇 2023年5月11日
下一篇 2023年5月11日

相关文章

  • Opencv 开运算

    Opencv 开运算是一种常用的图像处理技术,可以用于去除图像中的噪点和细小的物体,同时也可以用于图像的形态学处理。本文将详细讲解Opencv运算的完整攻略,包括基本原理、方法和两个示例。 Opencv 开运算的基本原理 Opencv 开运算是一种基于形态学的处理技术,通过对图像进行腐蚀和胀操作,可以去除图像中的噪点和细小的物体,同时也用于图像的形态学处理。…

    python 2023年5月10日
    00
  • Opencv Prewitt滤波器

    OpenCV Prewitt滤波器 OpenCV Prewitt滤波器是一种线性滤波器,可以用于图像边缘检测和轮廓提取等应用。Prewitt滤波器的基本思想是对图像进行卷积操作,通过计算像素周围像素的梯度值来检测图像中的边缘。本文将介绍OpenCV Prewitt滤波的基本原理和使用方法,并提供两个示例。 OpenCV Prewitt滤波器的基本原理 Ope…

    python 2023年5月10日
    00
  • Opencv 8-连接数

    以下是关于Opencv 8-连接数的详细攻略。 Opencv 8-连接数基本原理 Opencv 8-连接数是一种常用的图像处理技术,用于在二值图像中查找连通域。具体实现方法包括: cv2.findContours 函数:用于在二值图像中查找轮廓。 8-连接数算法的基本原理是在二值图像中查找连通域时,将每个像素点作一个节点,如果两个节点相邻且都为前景像素,则它…

    python 2023年5月10日
    00
  • Opencv 仿射变换旋转

    Opencv 仿射变换旋转是一种常见的图像处理技术,可以用于图像的旋转、缩放、平移等操作。本文将详细讲解Opencv 仿射变换旋转的完整攻略,包括基本原理、使用方法和两个示例说明。 Opencv 仿射变换旋转的基本原理 Opencv 仿射变换旋转是一种基于仿射变换的图像处理技术,可以通过对图像进行旋转、缩放、平移等操作,实现图像的变换。仿射变换的基本原理是通…

    python 2023年5月10日
    00
  • Opencv NMS

    Opencv NMS的完整攻略 Opencv NMS(Non-Maximum Suppression)是一种常用的目标检测技术,可以用于去除重叠的检测框,提高检测的准确性。本文将详细讲解Opencv NMS的完整攻略,包括基本原理、方法和两个示例。 Opencv NMS的基本原理 Opencv NMS一种基于非极大值抑制的目标检测技术,通过去除重叠的检测框,…

    python 2023年5月10日
    00
  • Opencv 高斯金字塔

    以下是关于Opencv高斯金字塔的详细攻略。 Opencv高斯金字塔基本原理 高斯金字塔是一种常用的图像处理术,用于对图像进行尺度空间分析。具体实现方法包括: 对图像进行高斯滤波 对滤波后的图像进行下采样 重复上述步骤,直到达到所需的尺度 高斯金字塔可以用于图像的缩放、图像的特征提取等应用。 Opencv高斯金字塔的使用方法 Opencv库提供 cv2.py…

    python 2023年5月10日
    00
  • Python OpenCV – startWindowThread()

    以下是关于Python OpenCV-startWindowThread()的完整攻略。 Python OpenCV-startWindowThread()基本原理 startWindowThread()是OpenCV中的一个函数,用于启动窗口线程。在使用OpenCV进行图像处理,我们通常需要在窗口中显示图像。但是,如果我们在主线程中显示图像,会导致程序阻塞…

    python 2023年5月11日
    00
  • Opencv Canny边缘检测 边缘细化

    Opencv Canny边缘检测边缘细化的完整攻略 Opencv Canny边缘检测边缘细化是一种常用的图像处理技术,可以用于图像的边缘检测和边缘细化。本文将详细讲解Opencv Canny边缘检测边缘细化的完整攻略,包括基本原理、方法和两个示例。 Opencv Canny边缘检测边缘细化的基本原理 Opencv Canny边缘检测边缘细化是一种基于梯度计算…

    python 2023年5月10日
    00
合作推广
合作推广
分享本页
返回顶部