http://www.cnblogs.com/louyihang-loves-baiyan/
由于需要把FasterRCNN做的工程化,因此这里需要对Caffe进行封装。其实封装听起来感觉很高深的样子,其实就是将自己在caffe上再调用的接口做成一个动态库,同时将Caffe的库连着Caffe的那些库依赖一起做成自己工程的库依赖就可以了。如果你只是直接使用Caffe的话,那么到时候直接链接到caffe下面build目录中的libcaffe.so或者libcaffe.a就可以了。如果有对Caffe有C++代码的改动,操作也是一样的,但是如果用了Python 模块比如使用了Python Layer,那么在使用中,还需要为Caffe指定其Python模块的位置。
https://github.com/YihangLou/FasterRCNN-Encapsulation-Cplusplus
好了,首先在这里我参照http://blog.csdn.net/xyy19920105/article/details/50440957,感谢他的分享,让我们很受用。首先写成一个C++版本。一开始的版本是这样的,当时只有一个cpp文件。
#include <stdio.h> // for snprintf
#include <string>
#include <vector>
#include <math.h>
#include <fstream>
#include <boost/python.hpp>
#include "caffe/caffe.hpp"
#include "gpu_nms.hpp"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
using namespace caffe;
using namespace std;
#define max(a, b) (((a)>(b)) ? (a) :(b))
#define min(a, b) (((a)<(b)) ? (a) :(b))
const int class_num=2;
/*
* === Class ======================================================================
* Name: Detector
* Description: FasterRCNN CXX Detector
* =====================================================================================
*/
class Detector {
public:
Detector(const string& model_file, const string& weights_file);
void Detection(const string& im_name);
void bbox_transform_inv(const int num, const float* box_deltas, const float* pred_cls, float* boxes, float* pred, int img_height, int img_width);
void vis_detections(cv::Mat image, int* keep, int num_out, float* sorted_pred_cls, float CONF_THRESH);
void boxes_sort(int num, const float* pred, float* sorted_pred);
private:
shared_ptr<Net<float> > net_;
Detector(){}
};
/*
* === FUNCTION ======================================================================
* Name: Detector
* Description: Load the model file and weights file
* =====================================================================================
*/
//load modelfile and weights
Detector::Detector(const string& model_file, const string& weights_file)
{
net_ = shared_ptr<Net<float> >(new Net<float>(model_file, caffe::TEST));
net_->CopyTrainedLayersFrom(weights_file);
}
//Using for box sort
struct Info
{
float score;
const float* head;
};
bool compare(const Info& Info1, const Info& Info2)
{
return Info1.score > Info2.score;
}
/*
* === FUNCTION ======================================================================
* Name: Detect
* Description: Perform detection operation
* Warning the max input size should less than 1000*600
* =====================================================================================
*/
//perform detection operation
//input image max size 1000*600
void Detector::Detection(const string& im_name)
{
float CONF_THRESH = 0.8;
float NMS_THRESH = 0.3;
const int max_input_side=1000;
const int min_input_side=600;
cv::Mat cv_img = cv::imread(im_name);
cv::Mat cv_new(cv_img.rows, cv_img.cols, CV_32FC3, cv::Scalar(0,0,0));
if(cv_img.empty())
{
std::cout<<"Can not get the image file !"<<endl;
return ;
}
int max_side = max(cv_img.rows, cv_img.cols);
int min_side = min(cv_img.rows, cv_img.cols);
float max_side_scale = float(max_side) / float(max_input_side);
float min_side_scale = float(min_side) /float( min_input_side);
float max_scale=max(max_side_scale, min_side_scale);
float img_scale = 1;
if(max_scale > 1)
{
img_scale = float(1) / max_scale;
}
int height = int(cv_img.rows * img_scale);
int width = int(cv_img.cols * img_scale);
int num_out;
cv::Mat cv_resized;
std::cout<<"imagename "<<im_name<<endl;
float im_info[3];
float data_buf[height*width*3];
float *boxes = NULL;
float *pred = NULL;
float *pred_per_class = NULL;
float *sorted_pred_cls = NULL;
int *keep = NULL;
const float* bbox_delt;
const float* rois;
const float* pred_cls;
int num;
for (int h = 0; h < cv_img.rows; ++h )
{
for (int w = 0; w < cv_img.cols; ++w)
{
cv_new.at<cv::Vec3f>(cv::Point(w, h))[0] = float(cv_img.at<cv::Vec3b>(cv::Point(w, h))[0])-float(102.9801);
cv_new.at<cv::Vec3f>(cv::Point(w, h))[1] = float(cv_img.at<cv::Vec3b>(cv::Point(w, h))[1])-float(115.9465);
cv_new.at<cv::Vec3f>(cv::Point(w, h))[2] = float(cv_img.at<cv::Vec3b>(cv::Point(w, h))[2])-float(122.7717);
}
}
cv::resize(cv_new, cv_resized, cv::Size(width, height));
im_info[0] = cv_resized.rows;
im_info[1] = cv_resized.cols;
im_info[2] = img_scale;
for (int h = 0; h < height; ++h )
{
for (int w = 0; w < width; ++w)
{
data_buf[(0*height+h)*width+w] = float(cv_resized.at<cv::Vec3f>(cv::Point(w, h))[0]);
data_buf[(1*height+h)*width+w] = float(cv_resized.at<cv::Vec3f>(cv::Point(w, h))[1]);
data_buf[(2*height+h)*width+w] = float(cv_resized.at<cv::Vec3f>(cv::Point(w, h))[2]);
}
}
net_->blob_by_name("data")->Reshape(1, 3, height, width);
net_->blob_by_name("data")->set_cpu_data(data_buf);
net_->blob_by_name("im_info")->set_cpu_data(im_info);
net_->ForwardFrom(0);
bbox_delt = net_->blob_by_name("bbox_pred")->cpu_data();
num = net_->blob_by_name("rois")->num();
rois = net_->blob_by_name("rois")->cpu_data();
pred_cls = net_->blob_by_name("cls_prob")->cpu_data();
boxes = new float[num*4];
pred = new float[num*5*class_num];
pred_per_class = new float[num*5];
sorted_pred_cls = new float[num*5];
keep = new int[num];
for (int n = 0; n < num; n++)
{
for (int c = 0; c < 4; c++)
{
boxes[n*4+c] = rois[n*5+c+1] / img_scale;
}
}
bbox_transform_inv(num, bbox_delt, pred_cls, boxes, pred, cv_img.rows, cv_img.cols);
for (int i = 1; i < class_num; i ++)
{
for (int j = 0; j< num; j++)
{
for (int k=0; k<5; k++)
pred_per_class[j*5+k] = pred[(i*num+j)*5+k];
}
boxes_sort(num, pred_per_class, sorted_pred_cls);
_nms(keep, &num_out, sorted_pred_cls, num, 5, NMS_THRESH, 0);
vis_detections(cv_img, keep, num_out, sorted_pred_cls, CONF_THRESH);
}
cv::imwrite("vis.jpg",cv_img);
delete []boxes;
delete []pred;
delete []pred_per_class;
delete []keep;
delete []sorted_pred_cls;
}
/*
* === FUNCTION ======================================================================
* Name: vis_detections
* Description: Visuallize the detection result
* =====================================================================================
*/
void Detector::vis_detections(cv::Mat image, int* keep, int num_out, float* sorted_pred_cls, float CONF_THRESH)
{
int i=0;
while(sorted_pred_cls[keep[i]*5+4]>CONF_THRESH && i < num_out)
{
if(i>=num_out)
return;
cv::rectangle(image,cv::Point(sorted_pred_cls[keep[i]*5+0], sorted_pred_cls[keep[i]*5+1]),cv::Point(sorted_pred_cls[keep[i]*5+2], sorted_pred_cls[keep[i]*5+3]),cv::Scalar(255,0,0));
i++;
}
}
/*
* === FUNCTION ======================================================================
* Name: boxes_sort
* Description: Sort the bounding box according score
* =====================================================================================
*/
void Detector::boxes_sort(const int num, const float* pred, float* sorted_pred)
{
vector<Info> my;
Info tmp;
for (int i = 0; i< num; i++)
{
tmp.score = pred[i*5 + 4];
tmp.head = pred + i*5;
my.push_back(tmp);
}
std::sort(my.begin(), my.end(), compare);
for (int i=0; i<num; i++)
{
for (int j=0; j<5; j++)
sorted_pred[i*5+j] = my[i].head[j];
}
}
/*
* === FUNCTION ======================================================================
* Name: bbox_transform_inv
* Description: Compute bounding box regression value
* =====================================================================================
*/
void Detector::bbox_transform_inv(int num, const float* box_deltas, const float* pred_cls, float* boxes, float* pred, int img_height, int img_width)
{
float width, height, ctr_x, ctr_y, dx, dy, dw, dh, pred_ctr_x, pred_ctr_y, pred_w, pred_h;
for(int i=0; i< num; i++)
{
width = boxes[i*4+2] - boxes[i*4+0] + 1.0;
height = boxes[i*4+3] - boxes[i*4+1] + 1.0;
ctr_x = boxes[i*4+0] + 0.5 * width;
ctr_y = boxes[i*4+1] + 0.5 * height;
for (int j=0; j< class_num; j++)
{
dx = box_deltas[(i*class_num+j)*4+0];
dy = box_deltas[(i*class_num+j)*4+1];
dw = box_deltas[(i*class_num+j)*4+2];
dh = box_deltas[(i*class_num+j)*4+3];
pred_ctr_x = ctr_x + width*dx;
pred_ctr_y = ctr_y + height*dy;
pred_w = width * exp(dw);
pred_h = height * exp(dh);
pred[(j*num+i)*5+0] = max(min(pred_ctr_x - 0.5* pred_w, img_width -1), 0);
pred[(j*num+i)*5+1] = max(min(pred_ctr_y - 0.5* pred_h, img_height -1), 0);
pred[(j*num+i)*5+2] = max(min(pred_ctr_x + 0.5* pred_w, img_width -1), 0);
pred[(j*num+i)*5+3] = max(min(pred_ctr_y + 0.5* pred_h, img_height -1), 0);
pred[(j*num+i)*5+4] = pred_cls[i*class_num+j];
}
}
}
int main()
{
string model_file = "/home/lyh1/workspace/py-faster-rcnn/models/pascal_voc/VGG_CNN_M_1024/faster_rcnn_alt_opt/faster_rcnn_test.pt";
string weights_file = "/home/lyh1/workspace/py-faster-rcnn/output/default/yuanzhang_car/vgg_cnn_m_1024_fast_rcnn_stage2_iter_40000.caffemodel";
int GPUID=0;
Caffe::SetDevice(GPUID);
Caffe::set_mode(Caffe::GPU);
Detector det = Detector(model_file, weights_file);
det.Detection("/home/lyh1/workspace/py-faster-rcnn/data/demo/car.jpg");
return 0;
}
这个文件对应的CMakeLists.txt,其中对编译部分加了相应的注释。此处需要添加$PYTHONPATH
,原因是因为我们在使用中是C++接口调用的Caffe,但是在Caffe运行中调用了Python,因此需要告诉Caffe我们自己的Python模块的路径,比如这里去模型的定义文件中看,里面用了py-faster-rcnn根目录下的lib中的rpn文件夹下的proposal模块,因此需要在$PYTHONPATH
中加入这个模块路径...\py-faster-rcnn\lib
以及Caffe的Python接口路径...\py-faster-rcnn\caffe-fast-rcnn\python
,下面是我在~.bashrc
中添加$PYTHONPATH
,可供参考。添加之后执行source ~/.bashrc
,对bash立即生效,提醒一下.bashrc
是在你启动一个bash的时候会被立即执行的。要么你直接在当前bash中直接source,否则需要再打开一个新的bash
。还有一点,顺带提一下,加入到$PYTHONPATH
之后,如果你系统中有多个caffe
,那么你得想一下怎么防止冲突,当时我就给自己埋了个坑,别的caffe
调用PYTHON
接口时,就直接调到这个加入到$PYTHONPATH
中的这个caffe了,所以各种报错,如果可以话可以考虑用Docker来处理这种东西。
如图添加
还是接下来讲一下这个CMakeList.txt。我也是第一次用,之前用Autotools
,真是各种麻烦,对Linux下的手动编译都有一些阴影。用Cmake真的是比较傻瓜式的,能把东西梳理的比较清晰。
#This part is used for compile faster_rcnn_demo.cpp
#这里是版本要求,根据自己项目而定,我用了默认的
cmake_minimum_required (VERSION 2.8)
#我们的工程的名字
project (faster_rcnn_demo)
#添加我们要生成的可执行文件的名字,以及相应的源码文件
add_executable(faster_rcnn_demo faster_rcnn_demo.cpp)
#这里添加这个faster_rcnn_demo.cpp所依赖的头文件路径
#首先是Caffe目录的include
#其次是用了gpu_nms.cu,所以也要添加相应的头文件gpu_nms.hpp在py-faster-rcnn根目录下的lib/nms中
#下面就是几个Caffe的依赖项,包括Python
#值得注意的是boost/python。hpp的头文件路径也要加入
#还有opencv的路径,cuda路径,线性代数库路径相应的都要添加
include_directories ( "${PROJECT_SOURCE_DIR}/../caffe-fast-rcnn/include"
"${PROJECT_SOURCE_DIR}/../lib/nms"
/share/apps/local/include
/usr/local/include
/opt/python/include/python2.7
/share/apps/opt/intel/mkl/include
/usr/local/cuda/include )
#在这里值得说一下,target_link_libraries 语句中 生成的目标是可执行文件 后面紧跟的得是动态库的完整路径,否则会出错
#我一开始用的是Link_directoreis然后在后面直接加入了动态库的路径,结果他一直报错,提示找不到库,ORZ真是跪了,
#所以要么在这里直接加入完整路径或者同通过另一条语句find_library(),这种方式也比较好,直接去指定路径查找,返回相应的绝对路径也可避免直接添加地址的问题
#gpu_nms.so 在py-faster-rcnn根目录下的lib\nms中,直接make就会生成这个so文件
target_link_libraries(faster_rcnn_demo /home/lyh1/workspace/py-faster-rcnn/caffe-fast-rcnn/build/lib/libcaffe.so
/home/lyh1/workspace/py-faster-rcnn/lib/nms/gpu_nms.so
/share/apps/local/lib/libopencv_highgui.so
/share/apps/local/lib/libopencv_core.so
/share/apps/local/lib/libopencv_imgproc.so
/share/apps/local/lib/libopencv_imgcodecs.so
/share/apps/local/lib/libglog.so
/share/apps/local/lib/libboost_system.so
/share/apps/local/lib/libboost_python.so
/share/apps/local/lib/libglog.so
/opt/rh/python27/root/usr/lib64/libpython2.7.so
)
编译的时候比较坑爹,还会到这个问题
但是我用find命令查找了一下整个caffe的工程目录下居然没有这个caffe.pb.h 后来Google一下之后才知道需要手动生成,解决办法如下用protoc命令手动生成,并放到include文件夹下
protoc src/caffe/proto/caffe.proto --cpp_out=.
mkdir include/caffe/proto
mv src/caffe/proto/caffe.pb.h include/caffe/proto
最后cmake .
然后make
编译成功,运行正常。
接下来就是这么打包成动态库了,具体操作在下一个博文中
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:faster_rcnn c++版本的 caffe 封装(1) - Python技术站