默认caffe已经编译好了,并且编译好了pycaffe
首先准备训练和测试数据集,这里准备两类数据,分别放在文件夹0和文件夹1中(之所以使用0和1命名数据类别,是因为方便标注数据类别,直接用文件夹的名字即可)。即训练数据集:/data/train/0、/data/train/1 训练数据集:/data/val/0、/data/val/1。
数据准备好之后,创建记录数据文件和对应标签的txt文件
(1)创建训练数据集的train.txt
1 import os 2 f =open(r'train.txt',"w") 3 path = os.getcwd()+'/data/train/' 4 for filename in os.listdir(path) : 5 count = 0 6 for file in os.listdir(path+filename) : 7 count = count + 1 8 ff='/'+filename+"/"+file+" "+filename+"\n" 9 f.write(ff) 10 print '{} class: {}'.format(filename,count) 11 f.close()
(2)创建测试数据集val.txt
1 import os 2 f =open(r'val.txt',"w") 3 path = os.getcwd()+'/data/val/' 4 for filename in os.listdir(path) : 5 count = 0 6 for file in os.listdir(path+filename) : 7 count = count + 1 8 ff='/'+filename+"/"+file+" "+filename+"\n" 9 f.write(ff) 10 print '{} class: {}'.format(filename,count) 11 f.close()
注意,txt中文件的路径为: /类别文件夹名/文件名(空格,不能是制表符)类别
2 创建LMDB数据文件
创建createlmdb.sh使用caffe自带的(bulid/tools下的)convert_imageset创建LMDB数据文件,主要是注意数据文件以及上一步生成的txt文件的位置,注意数据文件的RESIZE,后边在进行训练和测试的时候还要用到,其余就是文件的路径的问题了。
1 #!/usr/bin/env sh 2 3 CAFFE_ROOT=/home/caf/object/caffe 4 TOOLS=$CAFFE_ROOT/build/tools 5 TRAIN_DATA_ROOT=/home/caf/wk/learn/data/train 6 VAL_DATA_ROOT=/home/caf/wk/learn/data/val 7 DATA=/home/caf/wk/learn/data 8 EXAMPLE=/home/caf/wk/learn/data/lmdb 9 # Set RESIZE=true to resize the images to 60 x 60. Leave as false if images have 10 # already been resized using another tool. 11 RESIZE=true 12 if $RESIZE; then 13 RESIZE_HEIGHT=227 14 RESIZE_WIDTH=227 15 else 16 RESIZE_HEIGHT=0 17 RESIZE_WIDTH=0 18 fi 19 20 if [ ! -d "$TRAIN_DATA_ROOT" ]; then 21 echo "Error: TRAIN_DATA_ROOT is not a path to a directory: $TRAIN_DATA_ROOT" 22 echo "Set the TRAIN_DATA_ROOT variable in create_face_48.sh to the path" \ 23 "where the face_48 training data is stored." 24 exit 1 25 fi 26 27 if [ ! -d "$VAL_DATA_ROOT" ]; then 28 echo "Error: VAL_DATA_ROOT is not a path to a directory: $VAL_DATA_ROOT" 29 echo "Set the VAL_DATA_ROOT variable in create_face_48.sh to the path" \ 30 "where the face_48 validation data is stored." 31 exit 1 32 fi 33 34 echo "Creating train lmdb..." 35 36 GLOG_logtostderr=1 $TOOLS/convert_imageset \ 37 --resize_height=$RESIZE_HEIGHT \ 38 --resize_width=$RESIZE_WIDTH \ 39 --shuffle \ 40 $TRAIN_DATA_ROOT \ 41 $DATA/train.txt \ 42 $EXAMPLE/face_train_lmdb 43 44 echo "Creating val lmdb..." 45 46 GLOG_logtostderr=1 $TOOLS/convert_imageset \ 47 --resize_height=$RESIZE_HEIGHT \ 48 --resize_width=$RESIZE_WIDTH \ 49 --shuffle \ 50 $VAL_DATA_ROOT \ 51 $DATA/val.txt \ 52 $EXAMPLE/face_val_lmdb 53 54 echo "Done."
3 定义网络
caffe接受的网络模型是prototxt文件,对于caffe网络的定义语法有详细的解释,本次实验用的是AlexNet,保存在train_val.prototxt
1 name: "AlexNet" 2 layer { 3 name: "data" 4 type: "Data" 5 top: "data" 6 top: "label" 7 include { 8 phase: TRAIN 9 } 10 data_param { 11 source: "/home/caf/wk/learn/data/lmdb/face_train_lmdb" 12 batch_size: 256 13 backend: LMDB 14 } 15 } 16 layer { 17 name: "data" 18 type: "Data" 19 top: "data" 20 top: "label" 21 include { 22 phase: TEST 23 } 24 data_param { 25 source: "/home/caf/wk/learn/data/lmdb/face_val_lmdb" 26 batch_size: 50 27 backend: LMDB 28 } 29 } 30 layer { 31 name: "conv1" 32 type: "Convolution" 33 bottom: "data" 34 top: "conv1" 35 param { 36 lr_mult: 1 37 decay_mult: 1 38 } 39 param { 40 lr_mult: 2 41 decay_mult: 0 42 } 43 convolution_param { 44 num_output: 96 45 kernel_size: 11 46 stride: 4 47 weight_filler { 48 type: "gaussian" 49 std: 0.01 50 } 51 bias_filler { 52 type: "constant" 53 value: 0 54 } 55 } 56 } 57 layer { 58 name: "relu1" 59 type: "ReLU" 60 bottom: "conv1" 61 top: "conv1" 62 } 63 layer { 64 name: "norm1" 65 type: "LRN" 66 bottom: "conv1" 67 top: "norm1" 68 lrn_param { 69 local_size: 5 70 alpha: 0.0001 71 beta: 0.75 72 } 73 } 74 layer { 75 name: "pool1" 76 type: "Pooling" 77 bottom: "norm1" 78 top: "pool1" 79 pooling_param { 80 pool: MAX 81 kernel_size: 3 82 stride: 2 83 } 84 } 85 layer { 86 name: "conv2" 87 type: "Convolution" 88 bottom: "pool1" 89 top: "conv2" 90 param { 91 lr_mult: 1 92 decay_mult: 1 93 } 94 param { 95 lr_mult: 2 96 decay_mult: 0 97 } 98 convolution_param { 99 num_output: 256 100 pad: 2 101 kernel_size: 5 102 group: 2 103 weight_filler { 104 type: "gaussian" 105 std: 0.01 106 } 107 bias_filler { 108 type: "constant" 109 value: 0.1 110 } 111 } 112 } 113 layer { 114 name: "relu2" 115 type: "ReLU" 116 bottom: "conv2" 117 top: "conv2" 118 } 119 layer { 120 name: "norm2" 121 type: "LRN" 122 bottom: "conv2" 123 top: "norm2" 124 lrn_param { 125 local_size: 5 126 alpha: 0.0001 127 beta: 0.75 128 } 129 } 130 layer { 131 name: "pool2" 132 type: "Pooling" 133 bottom: "norm2" 134 top: "pool2" 135 pooling_param { 136 pool: MAX 137 kernel_size: 3 138 stride: 2 139 } 140 } 141 layer { 142 name: "conv3" 143 type: "Convolution" 144 bottom: "pool2" 145 top: "conv3" 146 param { 147 lr_mult: 1 148 decay_mult: 1 149 } 150 param { 151 lr_mult: 2 152 decay_mult: 0 153 } 154 convolution_param { 155 num_output: 384 156 pad: 1 157 kernel_size: 3 158 weight_filler { 159 type: "gaussian" 160 std: 0.01 161 } 162 bias_filler { 163 type: "constant" 164 value: 0 165 } 166 } 167 } 168 layer { 169 name: "relu3" 170 type: "ReLU" 171 bottom: "conv3" 172 top: "conv3" 173 } 174 layer { 175 name: "conv4" 176 type: "Convolution" 177 bottom: "conv3" 178 top: "conv4" 179 param { 180 lr_mult: 1 181 decay_mult: 1 182 } 183 param { 184 lr_mult: 2 185 decay_mult: 0 186 } 187 convolution_param { 188 num_output: 384 189 pad: 1 190 kernel_size: 3 191 group: 2 192 weight_filler { 193 type: "gaussian" 194 std: 0.01 195 } 196 bias_filler { 197 type: "constant" 198 value: 0.1 199 } 200 } 201 } 202 layer { 203 name: "relu4" 204 type: "ReLU" 205 bottom: "conv4" 206 top: "conv4" 207 } 208 layer { 209 name: "conv5" 210 type: "Convolution" 211 bottom: "conv4" 212 top: "conv5" 213 param { 214 lr_mult: 1 215 decay_mult: 1 216 } 217 param { 218 lr_mult: 2 219 decay_mult: 0 220 } 221 convolution_param { 222 num_output: 256 223 pad: 1 224 kernel_size: 3 225 group: 2 226 weight_filler { 227 type: "gaussian" 228 std: 0.01 229 } 230 bias_filler { 231 type: "constant" 232 value: 0.1 233 } 234 } 235 } 236 layer { 237 name: "relu5" 238 type: "ReLU" 239 bottom: "conv5" 240 top: "conv5" 241 } 242 layer { 243 name: "pool5" 244 type: "Pooling" 245 bottom: "conv5" 246 top: "pool5" 247 pooling_param { 248 pool: MAX 249 kernel_size: 3 250 stride: 2 251 } 252 } 253 layer { 254 name: "fc6" 255 type: "InnerProduct" 256 bottom: "pool5" 257 top: "fc6" 258 param { 259 lr_mult: 1 260 decay_mult: 1 261 } 262 param { 263 lr_mult: 2 264 decay_mult: 0 265 } 266 inner_product_param { 267 num_output: 4096 268 weight_filler { 269 type: "gaussian" 270 std: 0.005 271 } 272 bias_filler { 273 type: "constant" 274 value: 0.1 275 } 276 } 277 } 278 layer { 279 name: "relu6" 280 type: "ReLU" 281 bottom: "fc6" 282 top: "fc6" 283 } 284 layer { 285 name: "drop6" 286 type: "Dropout" 287 bottom: "fc6" 288 top: "fc6" 289 dropout_param { 290 dropout_ratio: 0.5 291 } 292 } 293 layer { 294 name: "fc7" 295 type: "InnerProduct" 296 bottom: "fc6" 297 top: "fc7" 298 param { 299 lr_mult: 1 300 decay_mult: 1 301 } 302 param { 303 lr_mult: 2 304 decay_mult: 0 305 } 306 inner_product_param { 307 num_output: 4096 308 weight_filler { 309 type: "gaussian" 310 std: 0.005 311 } 312 bias_filler { 313 type: "constant" 314 value: 0.1 315 } 316 } 317 } 318 layer { 319 name: "relu7" 320 type: "ReLU" 321 bottom: "fc7" 322 top: "fc7" 323 } 324 layer { 325 name: "drop7" 326 type: "Dropout" 327 bottom: "fc7" 328 top: "fc7" 329 dropout_param { 330 dropout_ratio: 0.5 331 } 332 } 333 layer { 334 name: "fc8" 335 type: "InnerProduct" 336 bottom: "fc7" 337 top: "fc8" 338 param { 339 lr_mult: 1 340 decay_mult: 1 341 } 342 param { 343 lr_mult: 2 344 decay_mult: 0 345 } 346 inner_product_param { 347 num_output: 2 348 weight_filler { 349 type: "gaussian" 350 std: 0.01 351 } 352 bias_filler { 353 type: "constant" 354 value: 0 355 } 356 } 357 } 358 layer { 359 name: "accuracy" 360 type: "Accuracy" 361 bottom: "fc8" 362 bottom: "label" 363 top: "accuracy" 364 include { 365 phase: TEST 366 } 367 } 368 layer { 369 name: "loss" 370 type: "SoftmaxWithLoss" 371 bottom: "fc8" 372 bottom: "label" 373 top: "loss" 374 } 375 layer { 376 name: "prob" 377 type: "Softmax" 378 bottom: "fc8" 379 top: "prob" 380 }
View Code
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:caffe训练自己的数据集 - Python技术站