介绍
Java迷宫算法旨在通过编程形成一个迷宫的图形,让计算机自动地创建和解决迷宫。本文将会介绍常见的四种Java迷宫算法:递归分割算法、递归回溯算法、深度优先搜索(DFS)和广度优先搜索(BFS)算法。
递归分割算法
递归分割算法首先创建一个空的网格表示迷宫。网格中的每个单元格都代表迷宫的一个位置。分割过程会对这些位置进行标记,就像把它们铺上拼图一样。该算法会首先把整个迷宫划分成一个大的正方形,接着用随机的方法选中并划分这个正方形,直至整个网格被完全划分为止。
Java代码实现
void recursiveDivision(int x, int y, int width, int height) {
if (width < 2 || height < 2) {
return;
}
// 横线或竖线
boolean horizontal = (width > height);
// 随机数选择线的位置
int max = (horizontal ? height : width) - 1;
int line = (int) (random.nextDouble() * max);
// 创建一堵墙和两个门
if (horizontal) {
// 横线
int passage = x + line + 1;
createWall(x, y + line, width, true);
createPassage(passage, y + line, height);
recursiveDivision(x, y, width, line + 1);
recursiveDivision(x, y + line + 1, width, height - line - 1);
} else {
// 竖线
int passage = y + line + 1;
createWall(x + line, y, height, false);
createPassage(x + line, passage, width);
recursiveDivision(x, y, line + 1, height);
recursiveDivision(x + line + 1, y, width - line - 1, height);
}
}
示例
下面是一个运行递归分割算法生成的迷宫的示例图:
#############################
# # # # # # # #
# # # # # # # #
# # # # # # # #
# # # # # # # # #
# # # # # # # # #
# # # # # # # # # #
# # # # # # # # # # #
# # # # # # # # #
# # # # # # # #
# # # # # # # # # # #
# # # # # # # # #
# # # # # # # # # # #
# # # # # # # # # # #
# # # # # # # # # # #
# # # # # # # # # # # #
# # #########################
递归回溯算法
递归回溯算法先在随机位置选择一个起点,然后在迷宫中递归回溯,尝试找到一个特定位置的解。这种算法先在节点上打标记,指示它们的访问状态,并在需要时回溯。回溯是指程序回到先前遇到的节点,并从那里开始搜索其余的路径。
Java代码实现
void recursiveBacktracking(Node node) {
node.visited = true;
for (Direction direction : shuffle(getDirections())) {
Node neighbor = node.getNeighbor(direction);
if (neighbor != null && !neighbor.visited) {
node.open(direction);
recursiveBacktracking(neighbor);
}
}
}
示例
下面是一个运行递归回溯算法生成的迷宫的示例图:
#####################
# # # # #
# # # # # # # # # # #
# # # #
# # # # # # # # # # #
# # # # # # #
# # # # # # # # # # #
# # # # #
# # # # # # # # # # #
# # # # # # # #
# # # # # # # # #
# # # # #
# # # # # # # # # # #
# # # # #
# # # # # # # # # # #
深度优先搜索算法(DFS)
深度优先搜索算法从外围上的位置开始,尽可能往迷宫的核心走;比如使用下面的二维数组表示迷宫,从左上角走到右下角:
1 1 1 1 1
1 0 1 0 1
1 0 1 0 1
1 0 0 0 1
1 1 1 1 1
从左上角走到右下角,DFS算法会按照下面的顺序搜索:
1 1 1 1 1
1 0 1 0 1
1 0 1 0 1
1 0 0 0 1
1 1 1 1 1
Java代码实现
void depthFirstSearch(Node start, Node target) {
Stack<Node> stack = new Stack<>();
stack.push(start);
while (!stack.isEmpty()) {
Node node = stack.pop();
node.visited = true;
if (node == target) {
return;
}
for (Direction direction : shuffle(getDirections())) {
Node neighbor = node.getNeighbor(direction);
if (neighbor != null && !neighbor.visited && node.hasOpening(direction)) {
neighbor.parent = node;
stack.push(neighbor);
}
}
}
}
示例
下面是一个运行深度优先搜索算法生成的迷宫的示例图:
#########################
# # # # #
# # # # # # # # # # # # #
# # # #
# # # # # # # # # # #
# # # # # #
# # # # # # # # # # # #
# # # #
# # # # # # # # # # # # #
# # # # # #
# # # # # # # # # # # # #
# # # # #
# # # # # # # # # # # # #
# # # #
# # # # # # # # # # # # #
# #
#########################
广度优先搜索算法(BFS)
广度优先搜索算法从迷宫外围的位置开始,先搜索距离起点最近的一圈,然后再访问次近的圈,依次搜索,直到搜索到终点,或者搜索完全部。
Java代码实现
void breadthFirstSearch(Node start, Node target) {
Deque<Node> deque = new ArrayDeque<>();
deque.add(start);
while (!deque.isEmpty()) {
Node node = deque.removeFirst();
node.visited = true;
if (node == target) {
return;
}
for (Direction direction : shuffle(getDirections())) {
Node neighbor = node.getNeighbor(direction);
if (neighbor != null && !neighbor.visited && node.hasOpening(direction)) {
neighbor.parent = node;
deque.addLast(neighbor);
}
}
}
}
示例
下面是一个运行广度优先搜索算法生成的迷宫的示例图:
#############################
# # # # # # # # #
# # # # # # # # # # # # #
# # # # # # # # # # #
# # # # #
# # # # # # # # # # # # # #
# # # # # # # #
# # # # # # # # # # # # # # #
# # # # # # #
# # # # # # # # # # # # #
# # # # # # # # # # # # #
# # # # # # # # # # #
# # # # # # # # # # # # #
# # # # # # # # # # # # #
# # # # # # # # # #
# # # # # # # # # # # # # # #
总结
本文介绍并且演示了四种常见的Java迷宫算法。递归分割算法、递归回溯算法、深度优先搜索算法和广度优先搜索算法,每种算法各有其优点和缺点。了解这些算法对于解决问题和实现其他有用应用程序是非常有益的。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:java迷宫算法的理解(递归分割,递归回溯,深搜,广搜) - Python技术站