PyTorch实现MNIST数据集手写数字识别详情

以下是PyTorch实现MNIST数据集手写数字识别的完整攻略。

步骤一:导入必要的库

首先,我们需要导入必要的库,包括PyTorch、torchvision、numpy和matplotlib等。

import torch
import torchvision
import numpy as np
import matplotlib.pyplot as plt

步骤二:加载数据集

接下来,我们需要加载MNIST数据集。可以使用torchvision中的datasets模块来加载数据集。

train_dataset = torchvision.datasets.MNIST(root='./data', train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_dataset = torchvision.datasets.MNIST(root='./data', train=False, transform=torchvision.transforms.ToTensor(), download=True)

步骤三:定义模型

我们使用一个简单的卷积神经网络来实现手写数字识别。定义模型的代码如下:

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 32, kernel_size=5, padding=2)
        self.conv2 = torch.nn.Conv2d(32, 64, kernel_size=5, padding=2)
        self.fc1 = torch.nn.Linear(7 * 7 * 64, 1024)
        self.fc2 = torch.nn.Linear(1024, 10)

    def forward(self, x):
        x = torch.nn.functional.relu(self.conv1(x))
        x = torch.nn.functional.max_pool2d(x, 2)
        x = torch.nn.functional.relu(self.conv2(x))
        x = torch.nn.functional.max_pool2d(x, 2)
        x = x.view(-1, 7 * 7 * 64)
        x = torch.nn.functional.relu(self.fc1(x))
        x = torch.nn.functional.dropout(x, training=self.training)
        x = self.fc2(x)
        return torch.nn.functional.log_softmax(x, dim=1)

model = Net()

步骤四:定义损失函数和优化器

我们使用交叉熵损失函数和随机梯度下降优化器来训练模型。

criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.5)

步骤五:训练模型

接下来,我们使用训练集对模型进行训练。

train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)

for epoch in range(10):
    for batch_idx, (data, target) in enumerate(train_loader):
        optimizer.zero_grad()
        output = model(data)
        loss = criterion(output, target)
        loss.backward()
        optimizer.step()
        if batch_idx % 100 == 0:
            print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
                epoch, batch_idx * len(data), len(train_loader.dataset),
                100. * batch_idx / len(train_loader), loss.item()))

步骤六:测试模型

最后,我们使用测试集对模型进行测试。

test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=True)

with torch.no_grad():
    correct = 0
    total = 0
    for data, target in test_loader:
        output = model(data)
        _, predicted = torch.max(output.data, 1)
        total += target.size(0)
        correct += (predicted == target).sum().item()

    print('Accuracy of the network on the 10000 test images: %d %%' % (
        100 * correct / total))

上面的代码实现了PyTorch对MNIST数据集的手写数字识别。

示例一:显示数据集中的一张图片

image, label = train_dataset[0]
plt.imshow(image.squeeze().numpy(), cmap='gray')
plt.title('Label: %d' % label)
plt.show()

上面的代码显示了数据集中的一张图片。

示例二:显示模型的预测结果

image, label = test_dataset[0]
output = model(image.unsqueeze(0))
_, predicted = torch.max(output.data, 1)
plt.imshow(image.squeeze().numpy(), cmap='gray')
plt.title('Predicted: %d, Actual: %d' % (predicted.item(), label))
plt.show()

上面的代码显示了模型的预测结果。

总结:以上就是PyTorch实现MNIST数据集手写数字识别的完整攻略,包括数据集的加载、模型的定义、损失函数和优化器的定义、模型的训练和测试,以及两个示例的展示。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:PyTorch实现MNIST数据集手写数字识别详情 - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • pytorch 可视化feature map的示例代码

    PyTorch可视化Feature Map的示例代码攻略 在深度学习中,可视化模型的中间层输出(也称为特征图)是一种常见的技术,可以帮助我们理解模型的工作原理。在本攻略中,我们将介绍如何使用PyTorch可视化Feature Map,并提供两个示例说明。 什么是Feature Map? 在深度学习中,Feature Map是指卷积神经网络(CNN)中的中间层…

    python 2023年5月14日
    00
  • 在Python中使用第三方模块的教程

    当我们在使用Python编写程序时,经常会遇到自己需要的功能已经有其他人写好的模块,这时候我们就可以直接使用第三方模块,避免自己从零开始开发。本文将详细介绍在Python中使用第三方模块的教程。 第一步:安装第三方模块 在使用第三方模块之前,需要先安装这些模块。在Python中,可以使用pip命令安装第三方模块。首先要确定自己使用的是哪个Python版本,通…

    python 2023年5月14日
    00
  • Python Numpy库的超详细教程

    Python Numpy库的超详细教程 NumPy 库的基本概念 NumPy是Python中一个非常流行的学计算库,它提供了许多常用的数学函数和工具。NumPy的主要特点是它提供高效的多维数组对象,可以进行快速的数学运算和数据处理。 数组的创建 我们可以使用NumPy库中的np.array()函数来创建数组。下面一个创建一维数组的示: import nump…

    python 2023年5月13日
    00
  • 机器学习之KNN算法原理及Python实现方法详解

    机器学习之KNN算法原理及Python实现方法详解 KNN算法是一种常用的机器学习算法,它可以用于分类和回归问题。在本攻略中,我们将介绍KNN算法原理和Python实现方法,并提供两个示例。 KNN算法原理 KNN算法的原理是基于样本之间距离来进行分类或回归。在分类问题中,KNN算法将新样本与训练集中的所有样本进行距离计算,并距离最近的K个样本作为邻居。然后…

    python 2023年5月14日
    00
  • numpy中的norm()函数求范数实例

    以下是关于“numpy中的norm()函数求范数实例”的完整攻略。 背景 在数学中,范数是一种将向量映射到非负实数的函数。在NumPy中,可以使用norm()函数来计算向量的范数。本攻略将介如何使用NumPy中的norm()函数来计算向量的范数,并提供两个示例来演示如何使用这个函数。 np.linalg.norm() np.linalg.norm()函数用于…

    python 2023年5月14日
    00
  • 使用python实现三维图可视化

    使用Python实现三维图可视化 在本攻略中,我们将介绍如何使用Python实现三维图可视化。以下是完整的攻略,含两个示例说明。 示例1:绘制三维散点图 以下是使用Python绘制三维散点图的步骤: 导入必要的库。可以使用以下命令导入必要的库: import matplotlib.pyplot as plt from mpl_toolkits.mplot3d…

    python 2023年5月14日
    00
  • Python可视化最频繁使用的10大工具总结

    Python可视化最频繁使用的10大工具总结 Python可视化是数据分析和机器学习中不可或缺的一部分。Python提供了许多可化工具可以帮助我们更好地理解数据和模型。在本攻略中,我们将介绍Python可视化最频繁使用的10工具,并供两个示例。 1. Matplotlib Matplotlib是Python中最常用的可视化工具之一。它提供了广泛的图功能,包括…

    python 2023年5月14日
    00
  • Python中数组切片的用法实例详解

    以下是关于“Python中数组切片的用法实例详解”的完整攻略。 背景 在Python中,我们可以使用数组切片来获取数组中的一部分元素。本攻略将介绍如何使用数组切片提供两个示例来演示如何使用数组切片。 数组切片的用法 在Python中,我们可以使用数组切片来获取数组的一部分元素。以下是数组切片的语法: arr[start:stop:step] 其中,start…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部