python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片)

一、iloc、loc与icol的用法

ilocloc是pandas中选取行或列的常用方法,其中iloc使用整数通过行/列号选取数据,loc使用标签通过列/行名选取数据。与此类似,icol方法用于使用整数获取DataFrame的列。

在DataFrame中使用这些方法时,可以使用:

  • 切片:例如df.iloc[:,0:2]表示选取所有行和第0、1两列的数据
  • 花式索引:例如df.iloc[[0,2],[1,3]]表示选取第0、2两行和第1、3两列的交叉数据
  • 布尔索引:例如df.loc[df['column_name']==value]表示选取列名为column_name中值等于value的那些行的数据

二、示例说明

示例1:使用iloc进行列的切片

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': [7, 8, 9]})

# 使用iloc选取第0至第1列的数据
df_iloc = df.iloc[:,0:2]

print(df_iloc)

运行结果为:

   A  B
0  1  4
1  2  5
2  3  6

示例2:使用loc进行行的布尔索引

import pandas as pd

df = pd.DataFrame({'A': [1, 2, 3], 'B': [4, 5, 6], 'C': ['a', 'a', 'b']})

# 使用loc选取列名为'C'中值等于'b'的那些行的数据
df_loc = df.loc[df['C']=='b']

print(df_loc)

运行结果为:

   A  B  C
2  3  6  b

三、总结

在pandas中,iloc、loc与icol是常用的选取行或列的方法,切片、花式索引和布尔索引可以灵活组合使用,选取想要的数据。在实际使用中,要根据数据结构和分析需求灵活运用,提高数据分析效率。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:python选取特定列 pandas iloc,loc,icol的使用详解(列切片及行切片) - Python技术站

(0)
上一篇 2023年5月14日
下一篇 2023年5月14日

相关文章

  • 如何在Pandas中用自定义分隔符将CSV文件读到Dataframe中

    在Pandas中,可以通过read_csv函数将CSV文件读入一个Dataframe中。默认情况下,该函数使用逗号作为分隔符。如果需要使用自定义分隔符将CSV文件读入Dataframe中,可以使用sep参数指定分隔符。 以下是详细的步骤: 1.导入Pandas库 import pandas as pd 2.读取CSV文件到Dataframe中 df = pd…

    python-answer 2023年3月27日
    00
  • pandas 使用insert插入一列

    要在pandas的DataFrame对象中插入一列,可以使用insert()方法。insert()方法需要传入三个参数:需要插入的位置、新列的名称、新列的数据。 具体地,可以按如下步骤进行操作: 创建一个DataFrame对象 在这里,我们先创建一个包含学生姓名、班级、语文、数学和英语成绩的DataFrame对象: import pandas as pd d…

    python 2023年5月14日
    00
  • Python 从 narray/lists 的 dict 创建 DataFrame

    Python中的pandas库提供了DataFrame数据结构,可以用于数据分析和数据操作。DataFrame可以通过多种方式创建,其中之一是通过字典(dict)转换得到。本篇文章将详细讲解如何使用Python从narray/lists的dict创建DataFrame,包括如何设置列名、索引、数据类型等。 1. 实例说明 在开始讲解之前,先给出一个示例数据,…

    python-answer 2023年3月27日
    00
  • Pandas 嵌套字典到多指标数据框架

    Pandas 是一个极为常用的 Python 数据处理库,常常用于数据清洗、处理和分析。其中,嵌套字典转换成多指标数据框架是 Pandas 的常见应用之一,因此本文将详细讲解 Pandas 嵌套字典转换成多指标数据框架的完整攻略,并提供实例说明。 嵌套字典到多指标数据框架的转换 嵌套字典是一种字典嵌套字典的数据结构,其中嵌套的字典代表多个数据指标,如下所示:…

    python-answer 2023年3月27日
    00
  • JsRender for index循环索引用法详解

    介绍 JsRender是一款强大的JavaScript模板引擎,它可以方便我们在网页中使用数据来渲染HTML模板。在JsRender中,我们可以使用#each来遍历数据,同时通过索引,我们可以轻松的获取每个遍历元素的编号。 语法 JsRender中的#each语法如下: {{#each data}} …渲染内容… {{/each}} 其中,data是…

    python 2023年6月13日
    00
  • Pandas中GroupBy具体用法详解

    Pandas中GroupBy具体用法详解 在Pandas中,GroupBy是一个非常重要的功能,它被用于数据聚合、分组和汇总,可以帮助我们轻松地从数据中发现规律和趋势,更好地理解数据本身。本文将详细介绍Pandas中GroupBy的具体用法。 什么是GroupBy? GroupBy是一种数据处理的方式,用于将数据按照一定的规则分组,然后对每组数据进行特定的操…

    python 2023年5月14日
    00
  • 详解10个可以快速用Python进行数据分析的小技巧

    下面为您详细讲解“详解10个可以快速用Python进行数据分析的小技巧”的完整攻略。 详解10个可以快速用Python进行数据分析的小技巧 技巧1:使用Python的pandas库读取和处理数据 在Python中,pandas库是一个非常强大的数据分析工具,常用于读取、写入和处理各种数据格式。使用pandas读取和处理数据可以极大地提高工作效率,尤其是对于大…

    python 2023年5月14日
    00
  • Pandas中DataFrame数据删除详情

    下面是关于”Pandas中DataFrame数据删除详情”的完整攻略: 1. 删除行和列 在Pandas中,DataFrame数据可以通过drop()函数对其行和列进行删除。该函数的语法如下: DataFrame.drop(labels=None,axis=0/1, index=None, columns=None, level=None, inplace=…

    python 2023年5月14日
    00
合作推广
合作推广
分享本页
返回顶部