MySQL8.0 优化器介绍(二)

  • GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源。
  • GreatSQL是MySQL的国产分支版本,使用上与MySQL一致。
  • 作者: 奥特曼爱小怪兽
  • 文章来源:GreatSQL社区投稿

上一篇 MySQL8.0 优化器介绍(一)介绍了成本优化模型的三要素:表关联顺序,与每张表返回的行数(过滤效率),查询成本。而join算法又是影响表关联效率的首要因素。

join算法(Join Algorithms)

join在MySQL 是一个如此重要的章节,毫不夸张的说,everything is a join。

截止到本文写作时,MySQL8.0.32 GA已经发行,这里主要介绍三大join:NL(Nested Loop),BNL(Block Nested Loop),HASH JOIN

嵌套循环(Nested Loop)

MySQL5.7之前,都只有NL,它实现简单,适合索引查找。

几乎每个人都可以手动实现一个NL。

SELECT CountryCode, 
       country.Name AS Country,  
       city.Name AS City, 
       city.District  
  FROM world.country  
  INNER JOIN world.city  
    ON city.CountryCode = country.Code  
  WHERE Continent = 'Asia'; 
  
  ##执行计划类似如下:
  -> Nested loop inner join
     -> Filter: (country.Continent = 'Asia')
         -> Table scan on country
     -> Index lookup on city using CountryCode
     (CountryCode=country.`Code`)
     
 ##python 代码实现一个NL
 result = []
 for country_row in country:
     if country_row.Continent == 'Asia':
         for city_row in city.CountryCode['country_row.Code']:
             result.append(join_rows(country_row, city_row))

图示化一个NL

image-20230417112154499

NL的限制:通常多个表join,小表在前做驱动表,被驱动表有索引检索,效率会高一些。(官方手册上没有full outer join ,full join 语法,实际支持full join)

举个例子 多表join 且关联表不走索引:

#人为干预计划,走性能最差的执行路径。
SELECT /*+ NO_BNL(city) */
       CountryCode, 
       country.Name AS Country,
       city.Name AS City, 
       city.District
  FROM world.country IGNORE INDEX (Primary)
  INNER JOIN world.city IGNORE INDEX (CountryCode)
    ON city.CountryCode = country.Code
  WHERE Continent = 'Asia';
  
  SELECT rows_examined, rows_sent,
         last_statement_latency AS latency
    FROM sys.session
   WHERE thd_id =  PS_CURRENT_THREAD_ID()\G
**************************** 1. row ****************************
rows_examined: 208268
 rows_sent: 1766
 latency: 44.83 ms
 
 ##对比一下优化器 自动优化后的
 SELECT CountryCode, 
       country.Name AS Country,
       city.Name AS City, 
       city.District
  FROM world.country 
  INNER JOIN world.city 
    ON city.CountryCode = country.Code
  WHERE Continent = 'Asia';
  
  SELECT rows_examined, rows_sent,
         last_statement_latency AS latency
    FROM sys.session
   WHERE thd_id =  PS_CURRENT_THREAD_ID()\G
*************************** 1. row ***************************
rows_examined: 2005
 rows_sent: 1766
 latency: 4.36 ms
1 row in set (0.0539 sec)

块嵌套循环(Block Nested Loop)

块嵌套循环算法是嵌套循环算法的扩展。它也被称为BNL算法。连接缓冲区用于收集尽可能多的行,并在第二个表的一次扫描中比较所有行,而不是逐个提交第一个表中的行。这可以大大提高NL在某些查询上的性能。

hash join是在MySQL8.0.18引进的,下面的sql,使用了NO_HASH_JOIN(country,city) 的提示,并且两表的join 字段上的索引被忽略,目的是为了介绍BNL特性。

SELECT /*+ NO_HASH_JOIN(country,city) */
       CountryCode, 
       country.Name AS Country,
       city.Name AS City, 
       city.District
 FROM world.country IGNORE INDEX (Primary)
 INNER JOIN world.city IGNORE INDEX (CountryCode)
   ON city.CountryCode = country.Code
WHERE Continent = 'Asia';

##使用python伪代码来解释一下 BNL
result = []
join_buffer = []
for country_row in country:
     if country_row.Continent == 'Asia':
     join_buffer.append(country_row.Code)
     if is_full(join_buffer):
         for city_row in city:
             CountryCode = city_row.CountryCode
             if CountryCode in join_buffer:
                 country_row = get_row(CountryCode)
                 result.append(
                     join_rows(country_row, city_row))
             join_buffer = []
if len(join_buffer) > 0:
     for city_row in city:
     CountryCode = city_row.CountryCode
     if CountryCode in join_buffer:
         country_row = get_row(CountryCode)
         result.append(join_rows(country_row, city_row))
   join_buffer = []

图示化一个BNL

图片

注意图里的join_buffer,在MySQL5.7上使用sysbench压测读写场景,压力上不去,主要就是因为BNL 算法下,join_buffer_size的设置为默认值。适当调整几个buffer后,tps得到显著提高。join buffer对查询影响,也可以用下面的例子做一个量化说明。

SELECT /*+ NO_HASH_JOIN(country,city) */
       CountryCode, 
       country.Name AS Country,
       city.Name AS City, 
       city.District
 FROM world.country IGNORE INDEX (Primary)
 INNER JOIN world.city IGNORE INDEX (CountryCode)
   ON city.CountryCode = country.Code
WHERE Continent = 'Asia';

 SELECT rows_examined, rows_sent,
         last_statement_latency AS latency
    FROM sys.session
   WHERE thd_id =  PS_CURRENT_THREAD_ID()\G
*************************** 1. row ***************************
rows_examined: 4318
 rows_sent: 1766
 latency: 16.87 ms
1 row in set (0.0490 sec)

#人为干预计划,走性能最差的执行路径。
SELECT /*+ NO_BNL(city) */
       CountryCode, 
       country.Name AS Country,
       city.Name AS City, 
       city.District
  FROM world.country IGNORE INDEX (Primary)
  INNER JOIN world.city IGNORE INDEX (CountryCode)
    ON city.CountryCode = country.Code
  WHERE Continent = 'Asia';
  
  SELECT rows_examined, rows_sent,
         last_statement_latency AS latency
    FROM sys.session
   WHERE thd_id =  PS_CURRENT_THREAD_ID()\G
**************************** 1. row ****************************
rows_examined: 208268
 rows_sent: 1766
 latency: 44.83 ms
 
 在两表join,且join字段不使用索引的前提下,BNL +join_buffer 性能远大于 NL 

使用BNL 有几个点需要注意。(我实在懒得全文翻译官方文档了)

  • Only the columns required for the join are stored in the join buffer. This means that you will need less memory for the join buffer than you may at first expect. (不需要配置太高buffer)
  • The size of the join buffer is configured with the join_buffer_size variable. The value of join_buffer_size is the minimum size of the buffer! Even if less than 1 KiB of country code values will be stored in the join buffer in the discussed example, if join_buffer_size is set to 1 GiB, then 1 GiB will be allocated. For this reason, keep the value of join_buffer_size low and only increase it as needed.
  • One join buffer is allocated per join using the block nested loop algorithm.
  • Each join buffer is allocated for the entire duration of the query.
  • The block nested loop algorithm can be used for full table scans, full index scans, and range scans.(适用table access 方式)
  • The block nested loop algorithm will never be used for constant tables as well as the first nonconstant table. This means that it requires a join between two tables with more than one row after filtering by unique indexes to use the block nested loop algorithm

可以通过 optimizer switch 配置BNL() 、 NO_BNL()

BNL 特别擅长在non-indexed joins 的场景,很多时候性能优于hash join。As of version 8.0.20, block nested-loop joins are no longer used; instead, a hash join has replaced it.

哈希join (Hash Join)

图片

Hash Join 作为大杀器在 MySQL8.0.18引入,期间有过引起内存和文件句柄大量消耗的线上问题,但是不妨碍它作为一个join算法的重大突破,特别适合大表与大表的无索引join。某些场景甚至比NL+index join 更快。(当然比起oracle 上的hash join 依然弱爆了,40w * 40w 的大表查询,MySQL优化到极致在10s左右,oracle在1s 水平,相差一个数量级。

思考:MySQL、Oracle都是hash join,为何差距如此大?MySQL hash join 可以哪些方面进行性能提高?

业界主要有两大方向

  1. 单线程hash优化算法和数据结构
  2. NUMA架构下,多线程Hash Join的优化主要是能够让读写数据尽量发生在当前NUMA node

参考文档(https://zhuanlan.zhihu.com/p/589601705

大家不妨看看 MySQL工程师的worklog, 内容很精彩(https://dev.mysql.com/worklog/task/?id=2241

可以看出国外大厂强大的标准化的it生产能力,一个功能从需求到实现经历了哪些关键步骤。

MySQL 的Hash join是一个内存hash+磁盘hash的混合扩展。为了不让hash join 溢出join buffer,需要加大内存设置,使用磁盘hash时,需要配置更多的文件句柄数。尽管有disk hash ,但实际干活的还是in-memory hash。

内存hash 有两个阶段:

  1. build phase. One of the tables in the join is chosen as the build table. The hash is calculated for the columns required for the join and loaded into memory.
  2. probe phase. The other table in the join is the probe input. For this table, rows are read one at a time, and the hash is calculated. Then a hash key lookup is performed on the hashes calculated from the build table, and the result of the join is generated from the matching rows.

当hashes of build table 不足以全部放进内存时,MySQL会自动切换到on-disk的扩展实现(基于 GRACE hash join algorithm)。在build phase阶段,join buffer满,就会发生 in-mem hash 向on-disk hash 转换。

on-disk algorithm 包含3个步骤:

  1. Calculate the hashes of all rows in both the build and probe tables and store them on disk in several small files partitioned by the hash. The number of partitions is chosen to make each partition of the probe table fit into the join buffer but with a limit of at most 128 partitions.
  2. Load the first partition of the build table into memory and iterate over the hashes from the probe table in the same way as for the probe phase for the in-memory algorithm. Since the partitioning in step 1 uses the same hash function for both the build and probe tables, it is only necessary to iterate over the first partition of the probe table.
  3. Clear the in-memory buffer and continue with the rest of the partitions one by one

无论是内存hash还是磁盘hash,都使用xxHash64 hash function。xxHash64有足够快,hash质量好(reducing the number of hash collisions)的特点

BNL不会被选中的时候,MySQL就会选用hash join。

在整理这篇资料时,对要使用的哈希连接算法存在以下要求:

  • The join must be an inner join.
  • The join cannot be performed using an index, either because there is no available index or because the indexes have been disabled for the query.
  • All joins in the query must have at least one equi-join condition between the two tables in the join, and only columns from the two tables as well as constants are referenced in the condition. (查询中的所有联接必须在联接中的两个表之间至少有一个等联接条件,并且在该条件中仅引用两个表中的列以及常量)
  • As of 8.0.20, anti, semi, and outer joins are also supported. If you join the two tables t1 and t2, then examples of join conditions that are supported for hash join include
  • t1.t1_val = t2.t2_val
  • t1.t1_val = t2.t2_val + 2
  • t1.t1_val1 = t2.t2_val AND t1.t1_val2 > 100
  • MONTH(t1.t1_val) = MONTH(t2.t2_val)

用一个例子来说明一下hash join:

SELECT CountryCode, 
       country.Name AS Country,
       city.Name AS City, 
       city.District
 FROM world.country IGNORE INDEX (Primary)
 INNER JOIN world.city IGNORE INDEX (CountryCode)
   ON city.CountryCode = country.Code
WHERE Continent = 'Asia';

#用一段伪代码翻译一下
result = []
join_buffer = []
partitions = 0
on_disk = False
for country_row in country:
     if country_row.Continent == 'Asia':
         hash = xxHash64(country_row.Code)
         if not on_disk:
             join_buffer.append(hash)
             if is_full(join_buffer):
             # Create partitions on disk
               on_disk = True
               partitions = write_buffer_to_disk(join_buffer)
               join_buffer = []
         else
             write_hash_to_disk(hash)
             
if not on_disk:
     for city_row in city:
         hash = xxHash64(city_row.CountryCode)
         if hash in join_buffer:
             country_row = get_row(hash)
             city_row = get_row(hash)
             result.append(join_rows(country_row, city_row))
else:
     for city_row in city:
         hash = xxHash64(city_row.CountryCode)
         write_hash_to_disk(hash)
         
     for partition in range(partitions):
         join_buffer = load_build_from_disk(partition)
         for hash in load_hash_from_disk(partition):
         if hash in join_buffer:
             country_row = get_row(hash)
             city_row = get_row(hash)
             result.append(join_rows(country_row, city_row))
 join_buffer = []

与所使用的实际算法相比,所描述的算法稍微简化了一些。
真正的算法必须考虑哈希冲突,
而对于磁盘上的算法,某些分区可能会变得太大而无法放入连接缓冲区,
在这种情况下,它们会被分块处理,以避免使用比配置的内存更多的内存

图示化一下 in-mem hash 算法:

图片

量化一下hash join 的成本

SELECT CountryCode, 
       country.Name AS Country,
       city.Name AS City, 
       city.District
 FROM world.country IGNORE INDEX (Primary)
 INNER JOIN world.city IGNORE INDEX (CountryCode)
   ON city.CountryCode = country.Code
WHERE Continent = 'Asia';

SELECT rows_examined, rows_sent,
         last_statement_latency AS latency
    FROM sys.session
   WHERE thd_id =  PS_CURRENT_THREAD_ID()\G
**************************** 1. row ****************************
rows_examined: 4318
 rows_sent: 1766
 latency: 3.53 ms

从本文的例子中,rows_examined 的角度来看 index_join 下的NL(2005) 优于 无索引join条件下的BNL (4318)= 无索引join条件下的 hash join。但是当数据量发生变化,可能结果就不一样了,现实中也没有绝对的性能好坏规则(如果有,基于规则的成本计算就能很好处理的查询问题,实际上更值得信赖的是成本估算),hash join与NL,BNL 的优越比较,列出几点,当作纸上谈兵 :

Hash Join 最大的好处在于提升多表无索引关联时的查询性能。具体NL,BNL,HASH JOIN谁更适合用于查询计划,实践才是最好的证明。

同样可以使用HASH_JOIN() 和 NO_HASH_JOIN() 的hint 来影响查询计划。

MySQL8.0 关于支持的三种high-level 连接策略的讨论暂时到此结束。下来可以自己去查一下 anti, semi, and outer joins。

更多细节 参考

https://dev.mysql.com/doc/refman/8.0/en/select-optimization.html)(https://dev.mysql.com/doc/refman/8.0/en/semijoins.html

还有一些 关于join的lower-level优化值得考虑,下篇文章分解。


Enjoy GreatSQL ?

关于 GreatSQL

GreatSQL是由万里数据库维护的MySQL分支,专注于提升MGR可靠性及性能,支持InnoDB并行查询特性,是适用于金融级应用的MySQL分支版本。

相关链接: GreatSQL社区 Gitee GitHub Bilibili

GreatSQL社区:

社区博客有奖征稿详情:https://greatsql.cn/thread-100-1-1.html

image-20230105161905827

技术交流群:

微信:扫码添加GreatSQL社区助手微信好友,发送验证信息加群

image-20221030163217640

原文链接:https://www.cnblogs.com/greatsql/p/17325300.html

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:MySQL8.0 优化器介绍(二) - Python技术站

(0)
上一篇 2023年4月16日
下一篇 2023年4月17日

相关文章

  • MySQL 5.6下table_open_cache参数优化合理配置详解

    MySQL的table_open_cache参数是控制MySQL数据库中打开表的缓存数量的参数。合理配置table_open_cache参数能够有效的提升MySQL数据库的性能。下面就是一个关于MySQL 5.6下table_open_cache参数优化合理配置的详细攻略。 什么是table_open_cache参数 table_open_cache参数是M…

    MySQL 2023年5月19日
    00
  • MySQL中表锁和行锁机制浅析(源码篇)

    MySQL中表锁和行锁机制浅析(源码篇)详解 引言 MySQL在多个并发事务操作下,采用锁机制保证数据的一致性和并发量。MySQL锁机制主要分为表锁和行锁。本文将分析MySQL中表锁和行锁机制的源码实现原理及其应用。 表锁 概念 表锁的应用范围为整张表,在操作时会锁定整张表,其他事务将无法读写该表。 应用场景 表锁适用于以下场景: 对整张表进行DDL操作(如…

    MySQL 2023年5月19日
    00
  • MySQL开启Slow慢查询的方法示例

    下面是针对MySQL开启Slow慢查询的方法示例的完整攻略。 什么是慢查询 慢查询指的是在执行MySQL查询操作时,耗费的时间超过了预期的时间,通常时间超过一定阈值才会被视作慢查询。在实际情况中,慢查询往往是导致MySQL数据库性能下降的主要原因之一。因此,开启MySQL慢查询功能,及时监测并优化慢查询语句,可以大大提升MySQL数据库的性能。 如何开启My…

    MySQL 2023年5月19日
    00
  • 大幅优化MySQL查询性能的奇技淫巧

    首先介绍几条优化MySQL查询性能的奇技淫巧: 1. 创建合适的索引 索引能够提高查询速度,但是不是所有的列都适合建立索引。一般建议给经常作为查询条件的列建立索引,例如主键、外键、频繁用于查询的字段等。过多的索引可能会导致写入降速,所以需要选择适当的列建立索引。 2. 优化查询语句 查询语句的优化也是提高查询性能的重要手段。例如使用JOIN语句的时候一定要注…

    MySQL 2023年5月19日
    00
  • 三天吃透MySQL面试八股文

    什么是MySQL MySQL是一个关系型数据库,它采用表的形式来存储数据。你可以理解成是Excel表格,既然是表的形式存储数据,就有表结构(行和列)。行代表每一行数据,列代表该行中的每个值。列上的值是有数据类型的,比如:整数、字符串、日期等等。 数据库的三大范式 第一范式1NF 确保数据库表字段的原子性。 比如字段 userInfo: 广东省 10086′ …

    2023年4月8日
    00
  • MySQL使用二进制日志还原数据库

    MySQL 是一种开源的关系型数据库管理系统,它的日志文件是用于恢复和备份的重要部分。MySQL 支持三种类型的二进制日志,分别是:二进制日志、事务日志、和错误日志。其中,二进制日志是 MySQL 最常用的日志类型,它记录了所有添加、更改和删除表记录的 SQL 语句,是一个重要的恢复和备份工具。本文将详细介绍如何使用 MySQL 二进制日志还原数据库。 启用…

    MySQL 2023年3月10日
    00
  • MySQL游标(Cursor)的定义及使用方法详解

    MySQL游标(Cursor)是一种可在数据库中使用的数据结构,它被用于遍历结果集中的所有行并进行特定操作。游标通常用于存储过程和函数中,当需要一行一行地获取结果集中的数据时,它就变得非常有用了。 游标通常与SELECT语句一起使用,以便在结果集中获取数据。游标用于遍历结果集中的记录,并将结果集中的数据一行一行地存储或处理。游标顺序访问结果集中的每一行,并将…

    MySQL 2023年3月10日
    00
  • MySQL limit性能分析与优化

    MySQL的limit是一种非常常用的限制查询结果的方法,但是当limit条件设置较大时,可能会导致查询效率比较低下。因此针对limit可能存在性能问题,需要进行性能分析与优化的工作。 以下是“MySQL limit性能分析与优化”的完整攻略: 1.性能分析 1.1 查询分析 优化limit查询的第一步是明确查询语句的具体执行情况。可以使用EXPLAIN命令…

    MySQL 2023年5月19日
    00
合作推广
合作推广
分享本页
返回顶部