参考博客:

https://blog.csdn.net/muyouhang/article/details/54773265

https://blog.csdn.net/hhh0209/article/details/79830988

新建caffe的属性表,caffe_gpu_x64_release.props

将NugetPackages,caffe,CUDA中的头文件加进去

属性-C/C++-附加包含目录:

D:caffe20190311NugetPackagesOpenCV.2.4.10buildnativeinclude
D:caffe20190311NugetPackagesOpenBLAS.0.2.14.1libnativeinclude
D:caffe20190311NugetPackagesprotobuf-v120.2.6.1buildnativeinclude
D:caffe20190311NugetPackagesglog.0.3.3.0buildnativeinclude
D:caffe20190311NugetPackagesgflags.2.1.2.1buildnativeinclude
D:caffe20190311NugetPackagesboost.1.59.0.0libnativeinclude
D:caffe20190311caffe-masterinclude
D:caffe20190311caffe-masterincludecaffe
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0include

将NugetPackages,caffe生成的,CUDA中静态库加入进去

属性-链接器-常规-附加库目录:

D:caffe20190311NugetPackagesOpenCV.2.4.10buildnativelibx64v120Release
D:caffe20190311NugetPackageshdf5-v120-complete.1.8.15.2libnativelibx64
D:caffe20190311NugetPackagesOpenBLAS.0.2.14.1libnativelibx64
D:caffe20190311NugetPackagesgflags.2.1.2.1buildnativex64v120dynamicLib
D:caffe20190311NugetPackagesglog.0.3.3.0buildnativelibx64v120Releasedynamic
D:caffe20190311NugetPackagesprotobuf-v120.2.6.1buildnativelibx64v120Release
D:caffe20190311NugetPackagesboost_chrono-vc120.1.59.0.0libnativeaddress-model-64lib
D:caffe20190311NugetPackagesboost_system-vc120.1.59.0.0libnativeaddress-model-64lib
D:caffe20190311NugetPackagesboost_thread-vc120.1.59.0.0libnativeaddress-model-64lib
D:caffe20190311NugetPackagesboost_filesystem-vc120.1.59.0.0libnativeaddress-model-64lib
D:caffe20190311NugetPackagesboost_date_time-vc120.1.59.0.0libnativeaddress-model-64lib
D:caffe20190311caffe-masterBuildx64Release
C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0libx64

将一些动态库加入进去

属性-链接器-输入-附加依赖项:

libcaffe.lib
libprotobuf.lib
libglog.lib
gflags.lib
libopenblas.dll.a
hdf5.lib
hdf5_hl.lib
cublas.lib
cublas_device.lib
cuda.lib
cudadevrt.lib
cudnn.lib
cudart.lib
cufft.lib
cudart_static.lib
cufftw.lib
cusparse.lib
cusolver.lib
curand.lib
nppc.lib
opencv_highgui2410.lib
opencv_core2410.lib
opencv_imgproc2410.lib
kernel32.lib
user32.lib
gdi32.lib
winspool.lib
comdlg32.lib
advapi32.lib
shell32.lib
ole32.lib
oleaut32.lib
uuid.lib
odbc32.lib
odbccp32.lib

若在没有GPU的电脑,用cpu调用caffe

将头文件,静态库目录,动态库,去掉和cuda相关的就行

caffe_cpu_x64_release.props

附加包含目录,去掉最后一排与CUDA相关的头文件目录

附加库目录,去掉最后一排与CUDA相关的静态库目录

附加依赖项:

libcaffe.lib
libprotobuf.lib
libglog.lib
gflags.lib
libopenblas.dll.a
hdf5.lib
hdf5_hl.lib
opencv_highgui2410.lib
opencv_core2410.lib
opencv_imgproc2410.lib
kernel32.lib
user32.lib
gdi32.lib
winspool.lib
comdlg32.lib
advapi32.lib
shell32.lib
ole32.lib
oleaut32.lib
uuid.lib
odbc32.lib
odbccp32.lib

即可配置好caffe_x64_release.props的属性表  

调用caffe,输入prototxt和caffemodel文件,输出每个层的名字:

caffe_layer.h

#include<caffe/common.hpp>
#include<caffe/proto/caffe.pb.h>
#include<caffe/layers/batch_norm_layer.hpp>
#include<caffe/layers/bias_layer.hpp>
#include <caffe/layers/concat_layer.hpp>  
#include <caffe/layers/conv_layer.hpp>
#include <caffe/layers/dropout_layer.hpp>  
#include<caffe/layers/input_layer.hpp>
#include <caffe/layers/inner_product_layer.hpp>   
#include "caffe/layers/lrn_layer.hpp"    
#include <caffe/layers/pooling_layer.hpp>    
#include <caffe/layers/relu_layer.hpp>    
#include "caffe/layers/softmax_layer.hpp"  
#include<caffe/layers/scale_layer.hpp>
#include<caffe/layers/prelu_layer.hpp>
namespace caffe
{
	extern INSTANTIATE_CLASS(BatchNormLayer);
	extern INSTANTIATE_CLASS(BiasLayer);
	extern INSTANTIATE_CLASS(InputLayer);
	extern INSTANTIATE_CLASS(InnerProductLayer);
	extern INSTANTIATE_CLASS(DropoutLayer);
	extern INSTANTIATE_CLASS(ConvolutionLayer);
	REGISTER_LAYER_CLASS(Convolution);
	extern INSTANTIATE_CLASS(ReLULayer);
	REGISTER_LAYER_CLASS(ReLU);
	extern INSTANTIATE_CLASS(PoolingLayer);
	REGISTER_LAYER_CLASS(Pooling);
	extern INSTANTIATE_CLASS(LRNLayer);
	REGISTER_LAYER_CLASS(LRN);
	extern INSTANTIATE_CLASS(SoftmaxLayer);
	REGISTER_LAYER_CLASS(Softmax);
	extern INSTANTIATE_CLASS(ScaleLayer);
	extern INSTANTIATE_CLASS(ConcatLayer);

	extern INSTANTIATE_CLASS(PReLULayer);
}

main.cpp  

#include<caffe.hpp>
#include <string>
#include <vector>
#include "caffe_layer.h"
using namespace caffe;
using namespace std;
int main() {
	string net_file = "./infrared_mbfnet/antispoof-infrared.prototxt";		//prototxt文件
	string weight_file = "./infrared_mbfnet/antispoof-infrared.caffemodel";		//caffemodel文件
	Caffe::set_mode(Caffe::CPU);
	//Caffe::SetDevice(0);
	Phase phase = TEST;
	boost::shared_ptr<Net<float>> net(new caffe::Net<float>(net_file, phase));

	net->CopyTrainedLayersFrom(weight_file);

	vector<string> blob_names = net->blob_names();

	for (int i = 0; i < blob_names.size(); i++){
		cout << blob_names.at(i) << endl;
	}

	system("pause");
	return 0;
}

注意:若模型中用到了,prelu层,需要在caffe_layer.h中加入prelu_layer.hpp的头文件,并在代码中声明一下,extern INSTANTIATE_CLASS(PReLULayer),否则,会报错,找不到该层。

运行结果:

windows下用c++调用caffe做前向

 

用c++调用caffe做前向:

在caffe目录中,./caffe-master/examples/cpp_classification/classification.cpp  将该文件添加到vs2013工程中,配置caffe_x64_release属性表

在原始的classification.cpp文件中,main函数的输入项有4个,model_file,trained_file,label_file,mean_file,其中mean_file是均值文件,存放了img.channels x height x width个float型的数,每个float数,是所有训练样本该位置的均值。在有些情况下,均值已经确定,imgdata=(src-127.5)*0.0078125,故可以将均值直接赋值给Classifier类的成员变量mean_。

void Classifier::SetMean1()
{
	mean_ = cv::Mat(input_geometry_, CV_32FC3, cv::Scalar(127.5, 127.5, 127.5));
}

此时,main函数只需要输入3个参数,prototxt,caffemodel,label.txt文件。

该工程中包含两个文件,caffe_layer.h,classification.cpp

classification.cpp

#define USE_OPENCV 1
#include <caffe/caffe.hpp>
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif  // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <fstream>
#include <time.h>
#include "caffe_layer.h"

#ifdef USE_OPENCV
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;
using namespace cv;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
 public:
  Classifier(const string& model_file,
             const string& trained_file,
             const string& label_file);

  std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

  int Classify1(const cv::Mat& img);

 private:
  void SetMean(const string& mean_file);
  void SetMean1();

  std::vector<float> Predict(const cv::Mat& img);

  void WrapInputLayer(std::vector<cv::Mat>* input_channels);

  void Preprocess(const cv::Mat& img,
                  std::vector<cv::Mat>* input_channels);

 private:
  shared_ptr<Net<float> > net_;
  cv::Size input_geometry_;
  int num_channels_;
  cv::Mat mean_;
  std::vector<string> labels_;
};

Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& label_file) {
#ifdef CPU_ONLY
  Caffe::set_mode(Caffe::CPU);
#else
  Caffe::set_mode(Caffe::GPU);
#endif

  /* Load the network. */
  net_.reset(new Net<float>(model_file, TEST));
  net_->CopyTrainedLayersFrom(trained_file);

  CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
  CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

  Blob<float>* input_layer = net_->input_blobs()[0];
  num_channels_ = input_layer->channels();
  //std::cout << num_channels_ << std::endl;
  CHECK(num_channels_ == 3 || num_channels_ == 1)
    << "Input layer should have 1 or 3 channels.";
  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

  /* Load the binaryproto mean file. */
  //SetMean(mean_file);
  SetMean1();

  /* Load labels. */
  std::ifstream labels(label_file.c_str());
  CHECK(labels) << "Unable to open labels file " << label_file;
  string line;
  while (std::getline(labels, line))
    labels_.push_back(string(line));

  Blob<float>* output_layer = net_->output_blobs()[0];
  CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
  return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
  std::vector<std::pair<float, int> > pairs;
  for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

  std::vector<int> result;
  for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
  return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
  std::vector<float> output = Predict(img);

  N = std::min<int>(labels_.size(), N);
  std::vector<int> maxN = Argmax(output, N);
  std::vector<Prediction> predictions;
  for (int i = 0; i < N; ++i) {
    int idx = maxN[i];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
  }

  return predictions;
}

int Classifier::Classify1(const cv::Mat& img) {
	std::vector<float> output = Predict(img);

	float max = output[0];
	int max_id = 0;
	for (int i = 1; i < output.size(); i++)
	{
		if (output[i]>max)
			max_id = i;
	}
	return max_id;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
  BlobProto blob_proto;
  ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

  /* Convert from BlobProto to Blob<float> */
  Blob<float> mean_blob;
  mean_blob.FromProto(blob_proto);
  CHECK_EQ(mean_blob.channels(), num_channels_)
    << "Number of channels of mean file doesn't match input layer.";

  /* The format of the mean file is planar 32-bit float BGR or grayscale. */
  std::vector<cv::Mat> channels;
  float* data = mean_blob.mutable_cpu_data();
  for (int i = 0; i < num_channels_; ++i) {
    /* Extract an individual channel. */
    cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    channels.push_back(channel);
    data += mean_blob.height() * mean_blob.width();
  }

  /* Merge the separate channels into a single image. */
  cv::Mat mean;
  cv::merge(channels, mean);

  /* Compute the global mean pixel value and create a mean image
   * filled with this value. */
  cv::Scalar channel_mean = cv::mean(mean);
  mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

void Classifier::SetMean1()
{
	mean_ = cv::Mat(input_geometry_, CV_32FC3, cv::Scalar(127.5, 127.5, 127.5));
}

std::vector<float> Classifier::Predict(const cv::Mat& img) {
  Blob<float>* input_layer = net_->input_blobs()[0];
  input_layer->Reshape(1, num_channels_,
                       input_geometry_.height, input_geometry_.width);
  /* Forward dimension change to all layers. */
  net_->Reshape();

  std::vector<cv::Mat> input_channels;
  WrapInputLayer(&input_channels);

  Preprocess(img, &input_channels);

  net_->Forward();

  /* Copy the output layer to a std::vector */
  Blob<float>* output_layer = net_->output_blobs()[0];
  const float* begin = output_layer->cpu_data();
  const float* end = begin + output_layer->channels();
  return std::vector<float>(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
 * (one per channel). This way we save one memcpy operation and we
 * don't need to rely on cudaMemcpy2D. The last preprocessing
 * operation will write the separate channels directly to the input
 * layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
  Blob<float>* input_layer = net_->input_blobs()[0];

  int width = input_layer->width();
  int height = input_layer->height();
  float* input_data = input_layer->mutable_cpu_data();
  for (int i = 0; i < input_layer->channels(); ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
  }
}

void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
  /* Convert the input image to the input image format of the network. */
  cv::Mat sample;
  if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
  else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
  else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
  else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
  else
    sample = img;

  cv::Mat sample_resized;
  if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
  else
    sample_resized = sample;

  cv::Mat sample_float;
  if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
  else
    sample_resized.convertTo(sample_float, CV_32FC1);

  cv::Mat sample_normalized;
  cv::subtract(sample_float, mean_, sample_normalized);

  cv::Mat img_scale(cv::Size(img.cols, img.rows), CV_32FC3, cv::Scalar(0, 0, 0));
  for (int i = 0; i < img_scale.rows; i++)
	  for (int j = 0; j < img_scale.cols; j++)
	  {
		  //cv::Vec3f *p = img_scale.ptr<Vec3f>(i, j);
		  if (sample_normalized.channels() == 3)
		  {
			  img_scale.at<Vec3f>(i, j)[0] = sample_normalized.at<Vec3f>(i, j)[0] * 0.0078125;
			  img_scale.at<Vec3f>(i, j)[1] = sample_normalized.at<Vec3f>(i, j)[1] * 0.0078125;
			  img_scale.at<Vec3f>(i, j)[2] = sample_normalized.at<Vec3f>(i, j)[2] * 0.0078125;
		  }
	  }

  /* This operation will write the separate BGR planes directly to the
   * input layer of the network because it is wrapped by the cv::Mat
   * objects in input_channels. */
  cv::split(img_scale, *input_channels);

  CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
}


int main(int argc, char** argv) 
{

	::google::InitGoogleLogging(argv[0]);

	string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt";
	string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel";
	string label_file = "infrared_mbfnet/infrared_label.txt";
	Classifier classifier(model_file, trained_file, label_file);

	string file = "img/0/outdoor_6_964.jpg";

	std::cout << file << " : ";

	cv::Mat img = cv::imread(file, 1);
	CHECK(!img.empty()) << "Unable to decode image " << file;
	int predict_id = classifier.Classify1(img);

	std::cout << predict_id << std::endl;

	system("pause");
	return 1;
}


/*
int main(int argc, char** argv) 
{

	::google::InitGoogleLogging(argv[0]);

	string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt";
	string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel";
	string label_file = "infrared_mbfnet/infrared_label.txt";
	Classifier classifier(model_file, trained_file, label_file);

	//string file = "img/0/outdoor_6_964.jpg";
	string txtpath = "infrared_test.txt";
	fstream fin;
	fin.open(txtpath, ios::in);
	if (!fin.is_open())
	{
		return -1;
	}
	string line;
	int total_num = 0;
	int pos_num = 0;
	while (!fin.eof())
	{
		total_num += 1;
		fin >> line;

		size_t pos1 = line.rfind('/');
		size_t pos2 = line.rfind('/', pos1-1);
		string true_label = line.substr(pos2 + 1, pos1 - pos2 - 1);
		
		
		cv::Mat img = cv::imread(line, 1);
		CHECK(!img.empty()) << "Unable to decode image " << line;
		int predict_id = classifier.Classify1(img);

		std::cout <<line<<" : "<< predict_id << std::endl;
		//std::cout << true_label << " " << predict_id << std::endl;
		if (atoi(true_label.c_str()) == predict_id)
			pos_num += 1;
	}

	float accuracy = pos_num*1.0 / total_num;
	std::cout << "accuracy:" << accuracy << std::endl;

	system("pause");
	return 1;
}
*/

#else
int main(int argc, char** argv) {
  LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif  // USE_OPENCV

若想将该inference的功能,集成在其他项目中,可将类的声明和类的实现,以及main函数分离:

caffe_layer.h(如上文所示)

classification.h

//#define USE_OPENCV 1
#include <caffe/caffe.hpp>
//#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
//#endif  // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include <fstream>
#include <time.h>


//#ifdef USE_OPENCV
using namespace caffe;  // NOLINT(build/namespaces)
using std::string;
using namespace cv;

/* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction;

class Classifier {
public:
	Classifier(const string& model_file,
		const string& trained_file,
		const string& label_file);

	std::vector<Prediction> Classify(const cv::Mat& img, int N = 5);

	int Classify1(const cv::Mat& img);

private:
	void SetMean(const string& mean_file);
	void SetMean1();

	std::vector<float> Predict(const cv::Mat& img);

	void WrapInputLayer(std::vector<cv::Mat>* input_channels);

	void Preprocess(const cv::Mat& img,
		std::vector<cv::Mat>* input_channels);

private:
	shared_ptr<Net<float> > net_;
	cv::Size input_geometry_;
	int num_channels_;
	cv::Mat mean_;
	std::vector<string> labels_;
};

classficaion.cpp

#include "classification.h"

Classifier::Classifier(const string& model_file,
                       const string& trained_file,
                       const string& label_file) {
#ifdef CPU_ONLY
  Caffe::set_mode(Caffe::CPU);
#else
  Caffe::set_mode(Caffe::GPU);
#endif

  /* Load the network. */
  net_.reset(new Net<float>(model_file, TEST));
  net_->CopyTrainedLayersFrom(trained_file);

  CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input.";
  CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output.";

  Blob<float>* input_layer = net_->input_blobs()[0];
  num_channels_ = input_layer->channels();
  //std::cout << num_channels_ << std::endl;
  CHECK(num_channels_ == 3 || num_channels_ == 1)
    << "Input layer should have 1 or 3 channels.";
  input_geometry_ = cv::Size(input_layer->width(), input_layer->height());

  /* Load the binaryproto mean file. */
  //SetMean(mean_file);
  SetMean1();

  /* Load labels. */
  std::ifstream labels(label_file.c_str());
  CHECK(labels) << "Unable to open labels file " << label_file;
  string line;
  while (std::getline(labels, line))
    labels_.push_back(string(line));

  Blob<float>* output_layer = net_->output_blobs()[0];
  CHECK_EQ(labels_.size(), output_layer->channels())
    << "Number of labels is different from the output layer dimension.";
}

static bool PairCompare(const std::pair<float, int>& lhs,
                        const std::pair<float, int>& rhs) {
  return lhs.first > rhs.first;
}

/* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
  std::vector<std::pair<float, int> > pairs;
  for (size_t i = 0; i < v.size(); ++i)
    pairs.push_back(std::make_pair(v[i], static_cast<int>(i)));
  std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare);

  std::vector<int> result;
  for (int i = 0; i < N; ++i)
    result.push_back(pairs[i].second);
  return result;
}

/* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
  std::vector<float> output = Predict(img);

  N = std::min<int>(labels_.size(), N);
  std::vector<int> maxN = Argmax(output, N);
  std::vector<Prediction> predictions;
  for (int i = 0; i < N; ++i) {
    int idx = maxN[i];
    predictions.push_back(std::make_pair(labels_[idx], output[idx]));
  }

  return predictions;
}

int Classifier::Classify1(const cv::Mat& img) {
	std::vector<float> output = Predict(img);

	float max = output[0];
	int max_id = 0;
	for (int i = 1; i < output.size(); i++)
	{
		if (output[i]>max)
			max_id = i;
	}
	return max_id;
}

/* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
  BlobProto blob_proto;
  ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto);

  /* Convert from BlobProto to Blob<float> */
  Blob<float> mean_blob;
  mean_blob.FromProto(blob_proto);
  CHECK_EQ(mean_blob.channels(), num_channels_)
    << "Number of channels of mean file doesn't match input layer.";

  /* The format of the mean file is planar 32-bit float BGR or grayscale. */
  std::vector<cv::Mat> channels;
  float* data = mean_blob.mutable_cpu_data();
  for (int i = 0; i < num_channels_; ++i) {
    /* Extract an individual channel. */
    cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
    channels.push_back(channel);
    data += mean_blob.height() * mean_blob.width();
  }

  /* Merge the separate channels into a single image. */
  cv::Mat mean;
  cv::merge(channels, mean);

  /* Compute the global mean pixel value and create a mean image
   * filled with this value. */
  cv::Scalar channel_mean = cv::mean(mean);
  mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
}

void Classifier::SetMean1()
{
	mean_ = cv::Mat(input_geometry_, CV_32FC3, cv::Scalar(127.5, 127.5, 127.5));
}

std::vector<float> Classifier::Predict(const cv::Mat& img) {
  Blob<float>* input_layer = net_->input_blobs()[0];
  input_layer->Reshape(1, num_channels_,
                       input_geometry_.height, input_geometry_.width);
  /* Forward dimension change to all layers. */
  net_->Reshape();

  std::vector<cv::Mat> input_channels;
  WrapInputLayer(&input_channels);

  Preprocess(img, &input_channels);

  net_->Forward();

  /* Copy the output layer to a std::vector */
  Blob<float>* output_layer = net_->output_blobs()[0];
  const float* begin = output_layer->cpu_data();
  const float* end = begin + output_layer->channels();
  return std::vector<float>(begin, end);
}

/* Wrap the input layer of the network in separate cv::Mat objects
 * (one per channel). This way we save one memcpy operation and we
 * don't need to rely on cudaMemcpy2D. The last preprocessing
 * operation will write the separate channels directly to the input
 * layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
  Blob<float>* input_layer = net_->input_blobs()[0];

  int width = input_layer->width();
  int height = input_layer->height();
  float* input_data = input_layer->mutable_cpu_data();
  for (int i = 0; i < input_layer->channels(); ++i) {
    cv::Mat channel(height, width, CV_32FC1, input_data);
    input_channels->push_back(channel);
    input_data += width * height;
  }
}

void Classifier::Preprocess(const cv::Mat& img,
                            std::vector<cv::Mat>* input_channels) {
  /* Convert the input image to the input image format of the network. */
  cv::Mat sample;
  if (img.channels() == 3 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
  else if (img.channels() == 4 && num_channels_ == 1)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
  else if (img.channels() == 4 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
  else if (img.channels() == 1 && num_channels_ == 3)
    cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
  else
    sample = img;

  cv::Mat sample_resized;
  if (sample.size() != input_geometry_)
    cv::resize(sample, sample_resized, input_geometry_);
  else
    sample_resized = sample;

  cv::Mat sample_float;
  if (num_channels_ == 3)
    sample_resized.convertTo(sample_float, CV_32FC3);
  else
    sample_resized.convertTo(sample_float, CV_32FC1);

  cv::Mat sample_normalized;
  cv::subtract(sample_float, mean_, sample_normalized);

  cv::Mat img_scale(cv::Size(img.cols, img.rows), CV_32FC3, cv::Scalar(0, 0, 0));
  for (int i = 0; i < img_scale.rows; i++)
	  for (int j = 0; j < img_scale.cols; j++)
	  {
		  //cv::Vec3f *p = img_scale.ptr<Vec3f>(i, j);
		  if (sample_normalized.channels() == 3)
		  {
			  img_scale.at<Vec3f>(i, j)[0] = sample_normalized.at<Vec3f>(i, j)[0] * 0.0078125;
			  img_scale.at<Vec3f>(i, j)[1] = sample_normalized.at<Vec3f>(i, j)[1] * 0.0078125;
			  img_scale.at<Vec3f>(i, j)[2] = sample_normalized.at<Vec3f>(i, j)[2] * 0.0078125;
		  }
	  }

  /* This operation will write the separate BGR planes directly to the
   * input layer of the network because it is wrapped by the cv::Mat
   * objects in input_channels. */
  cv::split(img_scale, *input_channels);

  CHECK(reinterpret_cast<float*>(input_channels->at(0).data)
        == net_->input_blobs()[0]->cpu_data())
    << "Input channels are not wrapping the input layer of the network.";
}




//#else
//int main(int argc, char** argv) {
//  LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
//}
//#endif  // USE_OPENCV

main.cpp

#include "classification.h"
#include "caffe_layer.h"

int main(int argc, char** argv)
{

	::google::InitGoogleLogging(argv[0]);

	string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt";
	string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel";
	string label_file = "infrared_mbfnet/infrared_label.txt";
	Classifier classifier(model_file, trained_file, label_file);

	string file = "img/0/outdoor_6_964.jpg";

	std::cout << file << " : ";

	cv::Mat img = cv::imread(file, 1);
	CHECK(!img.empty()) << "Unable to decode image " << file;
	int predict_id = classifier.Classify1(img);

	std::cout << predict_id << std::endl;

	system("pause");
	return 1;
}


/*
int main(int argc, char** argv)
{

::google::InitGoogleLogging(argv[0]);

string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt";
string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel";
string label_file = "infrared_mbfnet/infrared_label.txt";
Classifier classifier(model_file, trained_file, label_file);

//string file = "img/0/outdoor_6_964.jpg";
string txtpath = "infrared_test.txt";
fstream fin;
fin.open(txtpath, ios::in);
if (!fin.is_open())
{
return -1;
}
string line;
int total_num = 0;
int pos_num = 0;
while (!fin.eof())
{
total_num += 1;
fin >> line;

size_t pos1 = line.rfind('/');
size_t pos2 = line.rfind('/', pos1-1);
string true_label = line.substr(pos2 + 1, pos1 - pos2 - 1);


cv::Mat img = cv::imread(line, 1);
CHECK(!img.empty()) << "Unable to decode image " << line;
int predict_id = classifier.Classify1(img);

std::cout <<line<<" : "<< predict_id << std::endl;
//std::cout << true_label << " " << predict_id << std::endl;
if (atoi(true_label.c_str()) == predict_id)
pos_num += 1;
}

float accuracy = pos_num*1.0 / total_num;
std::cout << "accuracy:" << accuracy << std::endl;

system("pause");
return 1;
}
*/

注意:该工程是在vs2013下的release模式下调用,用vs2013的原因,是因为NugetPackages中仅有vs2013的lib和dll库,release的原因,因为caffe是在release模式下编译的,debug模式下没有试过。