参考博客:
https://blog.csdn.net/muyouhang/article/details/54773265
https://blog.csdn.net/hhh0209/article/details/79830988
新建caffe的属性表,caffe_gpu_x64_release.props
将NugetPackages,caffe,CUDA中的头文件加进去
属性-C/C++-附加包含目录:
D:caffe20190311NugetPackagesOpenCV.2.4.10buildnativeinclude D:caffe20190311NugetPackagesOpenBLAS.0.2.14.1libnativeinclude D:caffe20190311NugetPackagesprotobuf-v120.2.6.1buildnativeinclude D:caffe20190311NugetPackagesglog.0.3.3.0buildnativeinclude D:caffe20190311NugetPackagesgflags.2.1.2.1buildnativeinclude D:caffe20190311NugetPackagesboost.1.59.0.0libnativeinclude D:caffe20190311caffe-masterinclude D:caffe20190311caffe-masterincludecaffe C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0include
将NugetPackages,caffe生成的,CUDA中静态库加入进去
属性-链接器-常规-附加库目录:
D:caffe20190311NugetPackagesOpenCV.2.4.10buildnativelibx64v120Release D:caffe20190311NugetPackageshdf5-v120-complete.1.8.15.2libnativelibx64 D:caffe20190311NugetPackagesOpenBLAS.0.2.14.1libnativelibx64 D:caffe20190311NugetPackagesgflags.2.1.2.1buildnativex64v120dynamicLib D:caffe20190311NugetPackagesglog.0.3.3.0buildnativelibx64v120Releasedynamic D:caffe20190311NugetPackagesprotobuf-v120.2.6.1buildnativelibx64v120Release D:caffe20190311NugetPackagesboost_chrono-vc120.1.59.0.0libnativeaddress-model-64lib D:caffe20190311NugetPackagesboost_system-vc120.1.59.0.0libnativeaddress-model-64lib D:caffe20190311NugetPackagesboost_thread-vc120.1.59.0.0libnativeaddress-model-64lib D:caffe20190311NugetPackagesboost_filesystem-vc120.1.59.0.0libnativeaddress-model-64lib D:caffe20190311NugetPackagesboost_date_time-vc120.1.59.0.0libnativeaddress-model-64lib D:caffe20190311caffe-masterBuildx64Release C:Program FilesNVIDIA GPU Computing ToolkitCUDAv8.0libx64
将一些动态库加入进去
属性-链接器-输入-附加依赖项:
libcaffe.lib
libprotobuf.lib
libglog.lib
gflags.lib
libopenblas.dll.a
hdf5.lib
hdf5_hl.lib
cublas.lib
cublas_device.lib
cuda.lib
cudadevrt.lib
cudnn.lib
cudart.lib
cufft.lib
cudart_static.lib
cufftw.lib
cusparse.lib
cusolver.lib
curand.lib
nppc.lib
opencv_highgui2410.lib
opencv_core2410.lib
opencv_imgproc2410.lib
kernel32.lib
user32.lib
gdi32.lib
winspool.lib
comdlg32.lib
advapi32.lib
shell32.lib
ole32.lib
oleaut32.lib
uuid.lib
odbc32.lib
odbccp32.lib
若在没有GPU的电脑,用cpu调用caffe
将头文件,静态库目录,动态库,去掉和cuda相关的就行
caffe_cpu_x64_release.props
附加包含目录,去掉最后一排与CUDA相关的头文件目录
附加库目录,去掉最后一排与CUDA相关的静态库目录
附加依赖项:
libcaffe.lib libprotobuf.lib libglog.lib gflags.lib libopenblas.dll.a hdf5.lib hdf5_hl.lib opencv_highgui2410.lib opencv_core2410.lib opencv_imgproc2410.lib kernel32.lib user32.lib gdi32.lib winspool.lib comdlg32.lib advapi32.lib shell32.lib ole32.lib oleaut32.lib uuid.lib odbc32.lib odbccp32.lib
即可配置好caffe_x64_release.props的属性表
调用caffe,输入prototxt和caffemodel文件,输出每个层的名字:
caffe_layer.h
#include<caffe/common.hpp> #include<caffe/proto/caffe.pb.h> #include<caffe/layers/batch_norm_layer.hpp> #include<caffe/layers/bias_layer.hpp> #include <caffe/layers/concat_layer.hpp> #include <caffe/layers/conv_layer.hpp> #include <caffe/layers/dropout_layer.hpp> #include<caffe/layers/input_layer.hpp> #include <caffe/layers/inner_product_layer.hpp> #include "caffe/layers/lrn_layer.hpp" #include <caffe/layers/pooling_layer.hpp> #include <caffe/layers/relu_layer.hpp> #include "caffe/layers/softmax_layer.hpp" #include<caffe/layers/scale_layer.hpp> #include<caffe/layers/prelu_layer.hpp> namespace caffe { extern INSTANTIATE_CLASS(BatchNormLayer); extern INSTANTIATE_CLASS(BiasLayer); extern INSTANTIATE_CLASS(InputLayer); extern INSTANTIATE_CLASS(InnerProductLayer); extern INSTANTIATE_CLASS(DropoutLayer); extern INSTANTIATE_CLASS(ConvolutionLayer); REGISTER_LAYER_CLASS(Convolution); extern INSTANTIATE_CLASS(ReLULayer); REGISTER_LAYER_CLASS(ReLU); extern INSTANTIATE_CLASS(PoolingLayer); REGISTER_LAYER_CLASS(Pooling); extern INSTANTIATE_CLASS(LRNLayer); REGISTER_LAYER_CLASS(LRN); extern INSTANTIATE_CLASS(SoftmaxLayer); REGISTER_LAYER_CLASS(Softmax); extern INSTANTIATE_CLASS(ScaleLayer); extern INSTANTIATE_CLASS(ConcatLayer); extern INSTANTIATE_CLASS(PReLULayer); }
main.cpp
#include<caffe.hpp> #include <string> #include <vector> #include "caffe_layer.h" using namespace caffe; using namespace std; int main() { string net_file = "./infrared_mbfnet/antispoof-infrared.prototxt"; //prototxt文件 string weight_file = "./infrared_mbfnet/antispoof-infrared.caffemodel"; //caffemodel文件 Caffe::set_mode(Caffe::CPU); //Caffe::SetDevice(0); Phase phase = TEST; boost::shared_ptr<Net<float>> net(new caffe::Net<float>(net_file, phase)); net->CopyTrainedLayersFrom(weight_file); vector<string> blob_names = net->blob_names(); for (int i = 0; i < blob_names.size(); i++){ cout << blob_names.at(i) << endl; } system("pause"); return 0; }
注意:若模型中用到了,prelu层,需要在caffe_layer.h中加入prelu_layer.hpp的头文件,并在代码中声明一下,extern INSTANTIATE_CLASS(PReLULayer),否则,会报错,找不到该层。
运行结果:
用c++调用caffe做前向:
在caffe目录中,./caffe-master/examples/cpp_classification/classification.cpp 将该文件添加到vs2013工程中,配置caffe_x64_release属性表
在原始的classification.cpp文件中,main函数的输入项有4个,model_file,trained_file,label_file,mean_file,其中mean_file是均值文件,存放了img.channels x height x width个float型的数,每个float数,是所有训练样本该位置的均值。在有些情况下,均值已经确定,imgdata=(src-127.5)*0.0078125,故可以将均值直接赋值给Classifier类的成员变量mean_。
void Classifier::SetMean1() { mean_ = cv::Mat(input_geometry_, CV_32FC3, cv::Scalar(127.5, 127.5, 127.5)); }
此时,main函数只需要输入3个参数,prototxt,caffemodel,label.txt文件。
该工程中包含两个文件,caffe_layer.h,classification.cpp
classification.cpp
#define USE_OPENCV 1 #include <caffe/caffe.hpp> #ifdef USE_OPENCV #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #endif // USE_OPENCV #include <algorithm> #include <iosfwd> #include <memory> #include <string> #include <utility> #include <vector> #include <fstream> #include <time.h> #include "caffe_layer.h" #ifdef USE_OPENCV using namespace caffe; // NOLINT(build/namespaces) using std::string; using namespace cv; /* Pair (label, confidence) representing a prediction. */ typedef std::pair<string, float> Prediction; class Classifier { public: Classifier(const string& model_file, const string& trained_file, const string& label_file); std::vector<Prediction> Classify(const cv::Mat& img, int N = 5); int Classify1(const cv::Mat& img); private: void SetMean(const string& mean_file); void SetMean1(); std::vector<float> Predict(const cv::Mat& img); void WrapInputLayer(std::vector<cv::Mat>* input_channels); void Preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels); private: shared_ptr<Net<float> > net_; cv::Size input_geometry_; int num_channels_; cv::Mat mean_; std::vector<string> labels_; }; Classifier::Classifier(const string& model_file, const string& trained_file, const string& label_file) { #ifdef CPU_ONLY Caffe::set_mode(Caffe::CPU); #else Caffe::set_mode(Caffe::GPU); #endif /* Load the network. */ net_.reset(new Net<float>(model_file, TEST)); net_->CopyTrainedLayersFrom(trained_file); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input."; CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob<float>* input_layer = net_->input_blobs()[0]; num_channels_ = input_layer->channels(); //std::cout << num_channels_ << std::endl; CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels."; input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */ //SetMean(mean_file); SetMean1(); /* Load labels. */ std::ifstream labels(label_file.c_str()); CHECK(labels) << "Unable to open labels file " << label_file; string line; while (std::getline(labels, line)) labels_.push_back(string(line)); Blob<float>* output_layer = net_->output_blobs()[0]; CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension."; } static bool PairCompare(const std::pair<float, int>& lhs, const std::pair<float, int>& rhs) { return lhs.first > rhs.first; } /* Return the indices of the top N values of vector v. */ static std::vector<int> Argmax(const std::vector<float>& v, int N) { std::vector<std::pair<float, int> > pairs; for (size_t i = 0; i < v.size(); ++i) pairs.push_back(std::make_pair(v[i], static_cast<int>(i))); std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare); std::vector<int> result; for (int i = 0; i < N; ++i) result.push_back(pairs[i].second); return result; } /* Return the top N predictions. */ std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) { std::vector<float> output = Predict(img); N = std::min<int>(labels_.size(), N); std::vector<int> maxN = Argmax(output, N); std::vector<Prediction> predictions; for (int i = 0; i < N; ++i) { int idx = maxN[i]; predictions.push_back(std::make_pair(labels_[idx], output[idx])); } return predictions; } int Classifier::Classify1(const cv::Mat& img) { std::vector<float> output = Predict(img); float max = output[0]; int max_id = 0; for (int i = 1; i < output.size(); i++) { if (output[i]>max) max_id = i; } return max_id; } /* Load the mean file in binaryproto format. */ void Classifier::SetMean(const string& mean_file) { BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /* Convert from BlobProto to Blob<float> */ Blob<float> mean_blob; mean_blob.FromProto(blob_proto); CHECK_EQ(mean_blob.channels(), num_channels_) << "Number of channels of mean file doesn't match input layer."; /* The format of the mean file is planar 32-bit float BGR or grayscale. */ std::vector<cv::Mat> channels; float* data = mean_blob.mutable_cpu_data(); for (int i = 0; i < num_channels_; ++i) { /* Extract an individual channel. */ cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data); channels.push_back(channel); data += mean_blob.height() * mean_blob.width(); } /* Merge the separate channels into a single image. */ cv::Mat mean; cv::merge(channels, mean); /* Compute the global mean pixel value and create a mean image * filled with this value. */ cv::Scalar channel_mean = cv::mean(mean); mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean); } void Classifier::SetMean1() { mean_ = cv::Mat(input_geometry_, CV_32FC3, cv::Scalar(127.5, 127.5, 127.5)); } std::vector<float> Classifier::Predict(const cv::Mat& img) { Blob<float>* input_layer = net_->input_blobs()[0]; input_layer->Reshape(1, num_channels_, input_geometry_.height, input_geometry_.width); /* Forward dimension change to all layers. */ net_->Reshape(); std::vector<cv::Mat> input_channels; WrapInputLayer(&input_channels); Preprocess(img, &input_channels); net_->Forward(); /* Copy the output layer to a std::vector */ Blob<float>* output_layer = net_->output_blobs()[0]; const float* begin = output_layer->cpu_data(); const float* end = begin + output_layer->channels(); return std::vector<float>(begin, end); } /* Wrap the input layer of the network in separate cv::Mat objects * (one per channel). This way we save one memcpy operation and we * don't need to rely on cudaMemcpy2D. The last preprocessing * operation will write the separate channels directly to the input * layer. */ void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) { Blob<float>* input_layer = net_->input_blobs()[0]; int width = input_layer->width(); int height = input_layer->height(); float* input_data = input_layer->mutable_cpu_data(); for (int i = 0; i < input_layer->channels(); ++i) { cv::Mat channel(height, width, CV_32FC1, input_data); input_channels->push_back(channel); input_data += width * height; } } void Classifier::Preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels) { /* Convert the input image to the input image format of the network. */ cv::Mat sample; if (img.channels() == 3 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY); else if (img.channels() == 4 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY); else if (img.channels() == 4 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR); else if (img.channels() == 1 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR); else sample = img; cv::Mat sample_resized; if (sample.size() != input_geometry_) cv::resize(sample, sample_resized, input_geometry_); else sample_resized = sample; cv::Mat sample_float; if (num_channels_ == 3) sample_resized.convertTo(sample_float, CV_32FC3); else sample_resized.convertTo(sample_float, CV_32FC1); cv::Mat sample_normalized; cv::subtract(sample_float, mean_, sample_normalized); cv::Mat img_scale(cv::Size(img.cols, img.rows), CV_32FC3, cv::Scalar(0, 0, 0)); for (int i = 0; i < img_scale.rows; i++) for (int j = 0; j < img_scale.cols; j++) { //cv::Vec3f *p = img_scale.ptr<Vec3f>(i, j); if (sample_normalized.channels() == 3) { img_scale.at<Vec3f>(i, j)[0] = sample_normalized.at<Vec3f>(i, j)[0] * 0.0078125; img_scale.at<Vec3f>(i, j)[1] = sample_normalized.at<Vec3f>(i, j)[1] * 0.0078125; img_scale.at<Vec3f>(i, j)[2] = sample_normalized.at<Vec3f>(i, j)[2] * 0.0078125; } } /* This operation will write the separate BGR planes directly to the * input layer of the network because it is wrapped by the cv::Mat * objects in input_channels. */ cv::split(img_scale, *input_channels); CHECK(reinterpret_cast<float*>(input_channels->at(0).data) == net_->input_blobs()[0]->cpu_data()) << "Input channels are not wrapping the input layer of the network."; } int main(int argc, char** argv) { ::google::InitGoogleLogging(argv[0]); string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt"; string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel"; string label_file = "infrared_mbfnet/infrared_label.txt"; Classifier classifier(model_file, trained_file, label_file); string file = "img/0/outdoor_6_964.jpg"; std::cout << file << " : "; cv::Mat img = cv::imread(file, 1); CHECK(!img.empty()) << "Unable to decode image " << file; int predict_id = classifier.Classify1(img); std::cout << predict_id << std::endl; system("pause"); return 1; } /* int main(int argc, char** argv) { ::google::InitGoogleLogging(argv[0]); string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt"; string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel"; string label_file = "infrared_mbfnet/infrared_label.txt"; Classifier classifier(model_file, trained_file, label_file); //string file = "img/0/outdoor_6_964.jpg"; string txtpath = "infrared_test.txt"; fstream fin; fin.open(txtpath, ios::in); if (!fin.is_open()) { return -1; } string line; int total_num = 0; int pos_num = 0; while (!fin.eof()) { total_num += 1; fin >> line; size_t pos1 = line.rfind('/'); size_t pos2 = line.rfind('/', pos1-1); string true_label = line.substr(pos2 + 1, pos1 - pos2 - 1); cv::Mat img = cv::imread(line, 1); CHECK(!img.empty()) << "Unable to decode image " << line; int predict_id = classifier.Classify1(img); std::cout <<line<<" : "<< predict_id << std::endl; //std::cout << true_label << " " << predict_id << std::endl; if (atoi(true_label.c_str()) == predict_id) pos_num += 1; } float accuracy = pos_num*1.0 / total_num; std::cout << "accuracy:" << accuracy << std::endl; system("pause"); return 1; } */ #else int main(int argc, char** argv) { LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV."; } #endif // USE_OPENCV
若想将该inference的功能,集成在其他项目中,可将类的声明和类的实现,以及main函数分离:
caffe_layer.h(如上文所示)
classification.h
//#define USE_OPENCV 1 #include <caffe/caffe.hpp> //#ifdef USE_OPENCV #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> //#endif // USE_OPENCV #include <algorithm> #include <iosfwd> #include <memory> #include <string> #include <utility> #include <vector> #include <fstream> #include <time.h> //#ifdef USE_OPENCV using namespace caffe; // NOLINT(build/namespaces) using std::string; using namespace cv; /* Pair (label, confidence) representing a prediction. */ typedef std::pair<string, float> Prediction; class Classifier { public: Classifier(const string& model_file, const string& trained_file, const string& label_file); std::vector<Prediction> Classify(const cv::Mat& img, int N = 5); int Classify1(const cv::Mat& img); private: void SetMean(const string& mean_file); void SetMean1(); std::vector<float> Predict(const cv::Mat& img); void WrapInputLayer(std::vector<cv::Mat>* input_channels); void Preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels); private: shared_ptr<Net<float> > net_; cv::Size input_geometry_; int num_channels_; cv::Mat mean_; std::vector<string> labels_; };
classficaion.cpp
#include "classification.h" Classifier::Classifier(const string& model_file, const string& trained_file, const string& label_file) { #ifdef CPU_ONLY Caffe::set_mode(Caffe::CPU); #else Caffe::set_mode(Caffe::GPU); #endif /* Load the network. */ net_.reset(new Net<float>(model_file, TEST)); net_->CopyTrainedLayersFrom(trained_file); CHECK_EQ(net_->num_inputs(), 1) << "Network should have exactly one input."; CHECK_EQ(net_->num_outputs(), 1) << "Network should have exactly one output."; Blob<float>* input_layer = net_->input_blobs()[0]; num_channels_ = input_layer->channels(); //std::cout << num_channels_ << std::endl; CHECK(num_channels_ == 3 || num_channels_ == 1) << "Input layer should have 1 or 3 channels."; input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */ //SetMean(mean_file); SetMean1(); /* Load labels. */ std::ifstream labels(label_file.c_str()); CHECK(labels) << "Unable to open labels file " << label_file; string line; while (std::getline(labels, line)) labels_.push_back(string(line)); Blob<float>* output_layer = net_->output_blobs()[0]; CHECK_EQ(labels_.size(), output_layer->channels()) << "Number of labels is different from the output layer dimension."; } static bool PairCompare(const std::pair<float, int>& lhs, const std::pair<float, int>& rhs) { return lhs.first > rhs.first; } /* Return the indices of the top N values of vector v. */ static std::vector<int> Argmax(const std::vector<float>& v, int N) { std::vector<std::pair<float, int> > pairs; for (size_t i = 0; i < v.size(); ++i) pairs.push_back(std::make_pair(v[i], static_cast<int>(i))); std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare); std::vector<int> result; for (int i = 0; i < N; ++i) result.push_back(pairs[i].second); return result; } /* Return the top N predictions. */ std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) { std::vector<float> output = Predict(img); N = std::min<int>(labels_.size(), N); std::vector<int> maxN = Argmax(output, N); std::vector<Prediction> predictions; for (int i = 0; i < N; ++i) { int idx = maxN[i]; predictions.push_back(std::make_pair(labels_[idx], output[idx])); } return predictions; } int Classifier::Classify1(const cv::Mat& img) { std::vector<float> output = Predict(img); float max = output[0]; int max_id = 0; for (int i = 1; i < output.size(); i++) { if (output[i]>max) max_id = i; } return max_id; } /* Load the mean file in binaryproto format. */ void Classifier::SetMean(const string& mean_file) { BlobProto blob_proto; ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /* Convert from BlobProto to Blob<float> */ Blob<float> mean_blob; mean_blob.FromProto(blob_proto); CHECK_EQ(mean_blob.channels(), num_channels_) << "Number of channels of mean file doesn't match input layer."; /* The format of the mean file is planar 32-bit float BGR or grayscale. */ std::vector<cv::Mat> channels; float* data = mean_blob.mutable_cpu_data(); for (int i = 0; i < num_channels_; ++i) { /* Extract an individual channel. */ cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data); channels.push_back(channel); data += mean_blob.height() * mean_blob.width(); } /* Merge the separate channels into a single image. */ cv::Mat mean; cv::merge(channels, mean); /* Compute the global mean pixel value and create a mean image * filled with this value. */ cv::Scalar channel_mean = cv::mean(mean); mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean); } void Classifier::SetMean1() { mean_ = cv::Mat(input_geometry_, CV_32FC3, cv::Scalar(127.5, 127.5, 127.5)); } std::vector<float> Classifier::Predict(const cv::Mat& img) { Blob<float>* input_layer = net_->input_blobs()[0]; input_layer->Reshape(1, num_channels_, input_geometry_.height, input_geometry_.width); /* Forward dimension change to all layers. */ net_->Reshape(); std::vector<cv::Mat> input_channels; WrapInputLayer(&input_channels); Preprocess(img, &input_channels); net_->Forward(); /* Copy the output layer to a std::vector */ Blob<float>* output_layer = net_->output_blobs()[0]; const float* begin = output_layer->cpu_data(); const float* end = begin + output_layer->channels(); return std::vector<float>(begin, end); } /* Wrap the input layer of the network in separate cv::Mat objects * (one per channel). This way we save one memcpy operation and we * don't need to rely on cudaMemcpy2D. The last preprocessing * operation will write the separate channels directly to the input * layer. */ void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) { Blob<float>* input_layer = net_->input_blobs()[0]; int width = input_layer->width(); int height = input_layer->height(); float* input_data = input_layer->mutable_cpu_data(); for (int i = 0; i < input_layer->channels(); ++i) { cv::Mat channel(height, width, CV_32FC1, input_data); input_channels->push_back(channel); input_data += width * height; } } void Classifier::Preprocess(const cv::Mat& img, std::vector<cv::Mat>* input_channels) { /* Convert the input image to the input image format of the network. */ cv::Mat sample; if (img.channels() == 3 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY); else if (img.channels() == 4 && num_channels_ == 1) cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY); else if (img.channels() == 4 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR); else if (img.channels() == 1 && num_channels_ == 3) cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR); else sample = img; cv::Mat sample_resized; if (sample.size() != input_geometry_) cv::resize(sample, sample_resized, input_geometry_); else sample_resized = sample; cv::Mat sample_float; if (num_channels_ == 3) sample_resized.convertTo(sample_float, CV_32FC3); else sample_resized.convertTo(sample_float, CV_32FC1); cv::Mat sample_normalized; cv::subtract(sample_float, mean_, sample_normalized); cv::Mat img_scale(cv::Size(img.cols, img.rows), CV_32FC3, cv::Scalar(0, 0, 0)); for (int i = 0; i < img_scale.rows; i++) for (int j = 0; j < img_scale.cols; j++) { //cv::Vec3f *p = img_scale.ptr<Vec3f>(i, j); if (sample_normalized.channels() == 3) { img_scale.at<Vec3f>(i, j)[0] = sample_normalized.at<Vec3f>(i, j)[0] * 0.0078125; img_scale.at<Vec3f>(i, j)[1] = sample_normalized.at<Vec3f>(i, j)[1] * 0.0078125; img_scale.at<Vec3f>(i, j)[2] = sample_normalized.at<Vec3f>(i, j)[2] * 0.0078125; } } /* This operation will write the separate BGR planes directly to the * input layer of the network because it is wrapped by the cv::Mat * objects in input_channels. */ cv::split(img_scale, *input_channels); CHECK(reinterpret_cast<float*>(input_channels->at(0).data) == net_->input_blobs()[0]->cpu_data()) << "Input channels are not wrapping the input layer of the network."; } //#else //int main(int argc, char** argv) { // LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV."; //} //#endif // USE_OPENCV
main.cpp
#include "classification.h" #include "caffe_layer.h" int main(int argc, char** argv) { ::google::InitGoogleLogging(argv[0]); string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt"; string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel"; string label_file = "infrared_mbfnet/infrared_label.txt"; Classifier classifier(model_file, trained_file, label_file); string file = "img/0/outdoor_6_964.jpg"; std::cout << file << " : "; cv::Mat img = cv::imread(file, 1); CHECK(!img.empty()) << "Unable to decode image " << file; int predict_id = classifier.Classify1(img); std::cout << predict_id << std::endl; system("pause"); return 1; } /* int main(int argc, char** argv) { ::google::InitGoogleLogging(argv[0]); string model_file = "./infrared_mbfnet/antispoof-infrared.prototxt"; string trained_file = "./infrared_mbfnet/antispoof-infrared.caffemodel"; string label_file = "infrared_mbfnet/infrared_label.txt"; Classifier classifier(model_file, trained_file, label_file); //string file = "img/0/outdoor_6_964.jpg"; string txtpath = "infrared_test.txt"; fstream fin; fin.open(txtpath, ios::in); if (!fin.is_open()) { return -1; } string line; int total_num = 0; int pos_num = 0; while (!fin.eof()) { total_num += 1; fin >> line; size_t pos1 = line.rfind('/'); size_t pos2 = line.rfind('/', pos1-1); string true_label = line.substr(pos2 + 1, pos1 - pos2 - 1); cv::Mat img = cv::imread(line, 1); CHECK(!img.empty()) << "Unable to decode image " << line; int predict_id = classifier.Classify1(img); std::cout <<line<<" : "<< predict_id << std::endl; //std::cout << true_label << " " << predict_id << std::endl; if (atoi(true_label.c_str()) == predict_id) pos_num += 1; } float accuracy = pos_num*1.0 / total_num; std::cout << "accuracy:" << accuracy << std::endl; system("pause"); return 1; } */
注意:该工程是在vs2013下的release模式下调用,用vs2013的原因,是因为NugetPackages中仅有vs2013的lib和dll库,release的原因,因为caffe是在release模式下编译的,debug模式下没有试过。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:windows下用c++调用caffe做前向 - Python技术站