pytorch教程之Tensor的值及操作使用学习

当涉及到深度学习框架时,PyTorch是一个非常流行的选择。在PyTorch中,Tensor是一个非常重要的概念,它是一个多维数组,可以用于存储和操作数据。在本教程中,我们将学习如何使用PyTorch中的Tensor,包括如何创建、访问和操作Tensor。

创建Tensor

在PyTorch中,我们可以使用torch.Tensor()函数来创建一个Tensor。例如,我们可以使用以下代码创建一个2x3的Tensor:

import torch

x = torch.Tensor([[1, 2, 3], [4, 5, 6]])
print(x)

输出:

tensor([[1., 2., 3.],
        [4., 5., 6.]])

我们还可以使用其他函数来创建Tensor,例如:

  • torch.zeros():创建一个全为0的Tensor
  • torch.ones():创建一个全为1的Tensor
  • torch.rand():创建一个随机初始化的Tensor

例如,我们可以使用以下代码创建一个3x3的全为0的Tensor:

import torch

x = torch.zeros(3, 3)
print(x)

输出:

tensor([[0., 0., 0.],
        [0., 0., 0.],
        [0., 0., 0.]])

访问Tensor

我们可以使用索引来访问Tensor中的元素。例如,我们可以使用以下代码访问Tensor中的第一个元素:

import torch

x = torch.Tensor([[1, 2, 3], [4, 5, 6]])
print(x[0][0])

输出:

tensor(1.)

我们还可以使用切片来访问Tensor中的子集。例如,我们可以使用以下代码访问Tensor中的第一行:

import torch

x = torch.Tensor([[1, 2, 3], [4, 5, 6]])
print(x[0, :])

输出:

tensor([1., 2., 3.])

操作Tensor

在PyTorch中,我们可以使用各种函数来操作Tensor。例如,我们可以使用以下代码将两个Tensor相加:

import torch

x = torch.Tensor([[1, 2, 3], [4, 5, 6]])
y = torch.Tensor([[7, 8, 9], [10, 11, 12]])
z = x + y
print(z)

输出:

tensor([[ 8., 10., 12.],
        [14., 16., 18.]])

我们还可以使用其他函数来操作Tensor,例如:

  • torch.sum():计算Tensor中所有元素的和
  • torch.mean():计算Tensor中所有元素的平均值
  • torch.max():计算Tensor中所有元素的最大值
  • torch.min():计算Tensor中所有元素的最小值

例如,我们可以使用以下代码计算Tensor中所有元素的和:

import torch

x = torch.Tensor([[1, 2, 3], [4, 5, 6]])
print(torch.sum(x))

输出:

tensor(21.)

示例1:使用Tensor进行线性回归

在这个示例中,我们将使用Tensor来实现一个简单的线性回归模型。我们将使用以下公式来拟合一个线性函数:

y = 2x + 1

我们将使用随机生成的数据来训练模型,并使用梯度下降算法来更新模型参数。

import torch

# 生成随机数据
x = torch.randn(100, 1) * 10
y = x * 2 + 1 + torch.randn(100, 1)

# 定义模型
w = torch.randn(1, 1, requires_grad=True)
b = torch.randn(1, 1, requires_grad=True)

# 定义损失函数和优化器
criterion = torch.nn.MSELoss()
optimizer = torch.optim.SGD([w, b], lr=0.01)

# 进行模型训练
for epoch in range(1000):
    # 前向传播
    y_pred = x.mm(w) + b

    # 计算损失
    loss = criterion(y_pred, y)

    # 反向传播
    loss.backward()

    # 更新模型参数
    optimizer.step()
    optimizer.zero_grad()

    # 打印训练日志
    if (epoch + 1) % 100 == 0:
        print('Epoch [{}/{}], Loss: {:.4f}'.format(epoch+1, 1000, loss.item()))

# 打印最终模型参数
print('w: {:.4f}, b: {:.4f}'.format(w.item(), b.item()))

在这个示例中,我们首先生成了100个随机数据点,并使用这些数据点来训练模型。然后,我们定义了一个包含一个权重和一个偏置的线性模型。我们使用均方误差损失函数和随机梯度下降优化器来训练模型。最后,我们打印了最终的模型参数。

示例2:使用Tensor进行卷积操作

在这个示例中,我们将使用Tensor来实现一个简单的卷积操作。我们将使用一个3x3的卷积核来对一个5x5的图像进行卷积操作。

import torch

# 定义输入图像和卷积核
x = torch.Tensor([[1, 2, 3, 4, 5],
                  [6, 7, 8, 9, 10],
                  [11, 12, 13, 14, 15],
                  [16, 17, 18, 19, 20],
                  [21, 22, 23, 24, 25]])
k = torch.Tensor([[1, 0, -1],
                  [2, 0, -2],
                  [1, 0, -1]])

# 定义卷积操作
def conv2d(x, k):
    h, w = k.size()
    y = torch.zeros(x.size()[0]-h+1, x.size()[1]-w+1)
    for i in range(y.size()[0]):
        for j in range(y.size()[1]):
            y[i][j] = torch.sum(x[i:i+h, j:j+w] * k)
    return y

# 进行卷积操作
y = conv2d(x, k)

# 打印卷积结果
print(y)

在这个示例中,我们首先定义了一个5x5的输入图像和一个3x3的卷积核。然后,我们定义了一个卷积操作函数,该函数使用循环来计算卷积结果。最后,我们使用输入图像和卷积核来进行卷积操作,并打印卷积结果。

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:pytorch教程之Tensor的值及操作使用学习 - Python技术站

(0)
上一篇 2023年5月15日
下一篇 2023年5月15日

相关文章

  • 基于python及pytorch中乘法的使用详解

    基于Python及PyTorch中乘法的使用详解 在本文中,我们将详细介绍如何在Python和PyTorch中使用乘法。我们将提供两个示例,一个是使用Python中的乘法,另一个是使用PyTorch中的乘法。 示例1:使用Python中的乘法 以下是使用Python中的乘法的示例代码: # Define two matrices A = [[1, 2], […

    PyTorch 2023年5月16日
    00
  • Anaconda配置pytorch-gpu虚拟环境的图文教程

    在使用PyTorch进行深度学习任务时,为了提高训练速度,我们通常会使用GPU来加速计算。而Anaconda是一个非常方便的Python环境管理工具,可以帮助我们快速配置PyTorch的GPU环境。本文将提供一个详细的图文教程,介绍如何在Anaconda中配置PyTorch-GPU虚拟环境。 1. 安装Anaconda 首先,我们需要安装Anaconda。可…

    PyTorch 2023年5月15日
    00
  • ubuntu下anaconda使用jupyter notebook加载tensorflow、pytorch

    1.  安装完anaconda后,其环境会为我们在base(root)这个环境下配置jupyter notebook,而我们自己配置的TensorFlow环境下是没有自动配置这个工具的,所以我们需要自己在这个环境下配置jupyter notebook工具,具体操作如下: 1 conda activate tf #首先激活自己的tensorflow环境,tf为…

    PyTorch 2023年4月8日
    00
  • VScode中pytorch出现Module ‘torch’ has no ‘xx’ member错误

           因为代码变量太多,使用Sublime text并能很好地跳转,所以使用VsCode 神器。     导入Pytorch模块后出现了   Module ‘torch’ has no cat member,所以在网上找解决办法,这位博主的文章很好用,一路解决。        我的版本python3.7无Anacada,解决办法,打开设置,搜索pyt…

    2023年4月8日
    00
  • Pytorch学习笔记12—- Pytorch的LSTM的理解及入门小案例

    1.LSTM模型参数说明 class torch.nn.LSTM(*args, **kwargs) 参数列表 input_size:x的特征维度 hidden_size:隐藏层的特征维度 num_layers:lstm隐层的层数,默认为1 bias:False则bih=0和bhh=0. 默认为True batch_first:True则输入输出的数据格式为 …

    PyTorch 2023年4月8日
    00
  • [pytorch][模型压缩] 通道裁剪后的模型设计——以MobileNet和ResNet为例

    说明 模型裁剪可分为两种,一种是稀疏化裁剪,裁剪的粒度为值级别,一种是结构化裁剪,最常用的是通道裁剪。通道裁剪是减少输出特征图的通道数,对应的权值是卷积核的个数。 问题 通常模型裁剪的三个步骤是:1. 判断网络中不重要的通道 2. 删减掉不重要的通道(一般不会立即删,加mask等到评测时才开始删) 3. 将模型导出,然后进行finetue恢复精度。 步骤1,…

    PyTorch 2023年4月8日
    00
  • 教你一分钟在win10终端成功安装Pytorch的方法步骤

    PyTorch安装教程 PyTorch是一个基于Python的科学计算库,它支持GPU加速,提供了丰富的神经网络模块,可以用于自然语言处理、计算机视觉、强化学习等领域。本文将提供详细的PyTorch安装教程,以帮助您在Windows 10上成功安装PyTorch。 步骤一:安装Anaconda 在开始安装PyTorch之前,您需要先安装Anaconda。An…

    PyTorch 2023年5月16日
    00
  • PyTorch Distributed Data Parallel使用详解

    在PyTorch中,我们可以使用分布式数据并行(Distributed Data Parallel,DDP)来加速模型的训练。在本文中,我们将详细讲解如何使用DDP来加速模型的训练。我们将使用两个示例来说明如何完成这些步骤。 示例1:使用单个节点的多个GPU训练模型 以下是使用单个节点的多个GPU训练模型的步骤: import torch import to…

    PyTorch 2023年5月15日
    00
合作推广
合作推广
分享本页
返回顶部