下面我将详细讲解实现“Python实现随机从图像中获取多个patch”的攻略。
步骤1:导入必要的库
使用Python时,首先要导入相关的库。在这个过程中,我们所需要用到的库有numpy、cv2和PIL。
import numpy as np
import cv2
from PIL import Image
步骤2:读取图像
使用OpenCV库读取图像,并将其转换为numpy数组格式,方便进行后续操作。这里,我们需要读取的图像名称是"image.jpg",可以根据自己的需求进行替换。
img_path = "image.jpg"
img = cv2.imread(img_path)
img = np.array(img)
步骤3:设置patch参数
在读取图像后,我们需要设置patch的参数,如patch的大小、数量等。这里,我们将patch_size设置为400x400,stride为200x200。同时,为了获取更多的patch,我们可以通过增加边框的方式扩大图像的尺寸。
patch_size = (400, 400) # patch的大小
stride = (200,200) # patch的步长
border = (img.shape[0] % patch_size[0], img.shape[1] % patch_size[1]) # 边框大小
if border[0] != 0 or border[1] != 0:
img = cv2.copyMakeBorder(img, 0, patch_size[0]-border[0], 0, patch_size[1]-border[1], cv2.BORDER_CONSTANT, 0)
步骤4:生成patch
根据上面的设置,我们可以生成多个patch。可以通过for循环对整张图像进行遍历,然后取出每个小区域。这里,我们设置了一个计数器count,来计算生成的patch数量。
count = 0
for i in range(0, img.shape[0]-patch_size[0]+1, stride[0]):
for j in range(0, img.shape[1]-patch_size[1]+1, stride[1]):
patch = img[i:i+patch_size[0], j:j+patch_size[1], :].copy()
count += 1
步骤5:保存patch
在生成patch之后,我们可以将其保存为图片格式,以便后续使用。这里使用PIL库中的Image.fromarray方法转换成需要的图像格式,并将其保存为png格式的图片。
Image.fromarray(patch).save(f"patch_{count}.png")
至此,我们已经完成了实现“Python实现随机从图像中获取多个patch”的攻略。下面,我通过两个示例来进一步说明。
示例1:单张图像生成10个400x400大小的patch
import numpy as np
import cv2
from PIL import Image
img_path = "image.jpg"
img = cv2.imread(img_path)
img = np.array(img)
patch_size = (400, 400) # patch的大小
stride = (200,200) # patch的步长
border = (img.shape[0] % patch_size[0], img.shape[1] % patch_size[1]) # 边框大小
if border[0] != 0 or border[1] != 0:
img = cv2.copyMakeBorder(img, 0, patch_size[0]-border[0], 0, patch_size[1]-border[1], cv2.BORDER_CONSTANT, 0)
count = 0
for i in range(0, img.shape[0]-patch_size[0]+1, stride[0]):
for j in range(0, img.shape[1]-patch_size[1]+1, stride[1]):
patch = img[i:i+patch_size[0], j:j+patch_size[1], :].copy()
count += 1
Image.fromarray(patch).save(f"patch_{count}.png")
if count >= 10:
break
if count >= 10:
break
示例2:生成多个大小不同的patch,并随机旋转
import numpy as np
import cv2
import random
from PIL import Image
img_path = "image.jpg"
img = cv2.imread(img_path)
img = np.array(img)
patch_sizes = [(300, 300), (400, 400), (500, 500)]
strides = [(150, 150), (200, 200), (250, 250)]
borders = [(img.shape[0] % p[0], img.shape[1] % p[1]) for p in patch_sizes]
if borders[0][0] != 0 or borders[0][1] != 0:
img = cv2.copyMakeBorder(img, 0, patch_sizes[0][0]-borders[0][0], 0, patch_sizes[0][1]-borders[0][1], cv2.BORDER_CONSTANT, 0)
count = 0
for i in range(0, img.shape[0]-patch_sizes[0][0]+1, strides[0][0]):
for j in range(0, img.shape[1]-patch_sizes[0][1]+1, strides[0][1]):
for patch_size, stride, border in zip(patch_sizes, strides, borders):
patch = img[i:i+patch_size[0], j:j+patch_size[1], :].copy()
if random.random() > 0.5:
patch = cv2.flip(patch, 1)
if random.random() > 0.5:
patch = cv2.flip(patch, 0)
angle = random.randint(0, 360)
(h, w) = patch.shape[:2]
center = (w / 2, h / 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
patch = cv2.warpAffine(patch, M, (w, h))
count += 1
Image.fromarray(patch).save(f"patch_{count}.png")
if count >= 10:
break
if count >= 10:
break
if count >= 10:
break
以上就是详细的“Python实现随机从图像中获取多个patch”的攻略和示例分析。
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:Python实现随机从图像中获取多个patch - Python技术站