Learn From:
Pytroch 官方Tutorials
Pytorch 官方文档
环境:python3.6 CUDA10 pytorch1.3 vscode+jupyter扩展
#%%
#%%
# 1.Loading and normalizing CIFAR10
import torch
import torchvision
import torchvision.transforms as transforms
batch_size = 16
transform = transforms.Compose( [transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] )
# 对图像的预处理,用在加载数据时,当作函数传给transform参数
trainset = torchvision.datasets.CIFAR10(root='./data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=0)
testset = torchvision.datasets.CIFAR10(root='./data', train=False,
download=True, transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=batch_size,
shuffle=False, num_workers=0)
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
#%%
import matplotlib.pyplot as plt
import numpy as np
# functions to show an image
def imshow(img):
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
print( npimg.shape )
plt.imshow(np.transpose(npimg, (1, 2, 0)))
print( np.transpose( npimg, (1, 2, 0) ).shape )
plt.show()
# get some random training images
dataiter = iter(trainloader)
# images torch.Size([16, 3, 32, 32]). labels torch.Size([16])
images, labels = dataiter.next()
# show images
imshow(torchvision.utils.make_grid(images))
# print labels
print(' '.join('%5s' % classes[labels[j]] for j in range(batch_size)))
#%%
# 2.Define a Convolutional Neural Network
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 16, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(16, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
net = nn.DataParallel(net) # 多GPU
net.to(device) #GPU
#%%
# 3.Define a Loss Function and optimizer
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
#%%
# 4.Train the network
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data # torch.Size([16, 3, 32, 32])
# GPU
inputs, labels = inputs.to(device), labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 500 == 499:
print('[%d ,%5d] loss: %.3f' %
(epoch+1, i+1, running_loss/2000))
running_loss = 0.0
print("Finished Training")
# save trained model:
PATH = 'cifar_net.pth'
torch.save(net.module.state_dict(), PATH)
# 这样保存到模型就可以在CPU下运行
#%%
# 5.Test the network on the test data
# 为了练习多GPU训练模型,单CPU环境测试、运行模型,以下测试都是CPU的使用方法
dataiter = iter(testloader)
images, labels = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth: ',
''.join('%5s' % classes[labels[j]] for j in range(batch_size)))
net = Net()
net.load_state_dict(torch.load(PATH)) # 加载 CPU模型
# 输出的是能量能量越大的 是这个类的可能性越大
outputs = net(images)
# 按行取最大值
_, predicted = torch.max(outputs, 1)
print('Predicted: ',
''.join('%5s' % classes[predicted[j]] for j in range(batch_size)))
# Let us look at how the network performs on the whole dataset
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
# GPU
# images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%'
% (100 * correct / total))
# what are the classes that performed well,
# and the classes that did not perform well
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images, labels = data
# images, labels = images.to(device), labels.to(device)
outputs = net(images)
_, predicted = torch.max(outputs, 1)
c = (predicted == labels).squeeze()
for i in range(batch_size):
label = labels[i]
class_correct[label] += c[i].item()
class_total[label] += 1
for i in range(10):
print('Accuracy of %5s : %2d %%' % (
classes[i], 100 * class_correct[i] / class_total[i]))
结果:
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:[深度学习] Pytorch学习(二)—— torch.nn 实践:训练分类器(含多GPU训练CPU加载预测的使用方法) - Python技术站