TensorFlow中卷积 CNN中的卷积核及TensorFlow中卷积的各种实现

声明:

1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。

2. 我不确定的地方用了“应该”二字

首先,通俗说一下,CNN的存在是为了解决两个主要问题:

1. 权值太多。这个随便一篇博文都能解释

2. 语义理解。全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构。换句话说,打乱图像像素的输入顺序,结果不变。

然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的。这一点很简单也很重要:一般的卷积核如sobel算子、平滑算子等,都是人们根据数学知识得到的,比如求导,平均等等。所以一般的人工卷积核是不能放进卷积层的,这有悖于“学习”的概念。我们神经网络就是要自己学习卷积核的参数。来提取人们想不到甚至是无法理解的空间结构或特征。其他特征包括全局共享(一个卷积核滑动一整张图像),多核卷积(用一个卷积核只能提取一种空间结构或特征)。

最后,说一说TensorFlow中卷积的各种实现API(经常用到的):

import tensorflow as tf #自己去加,下面用tf代替tensorflow模块

1  tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, Name=None)

#输入:

# input: 一个张量。数据类型必须是float32或者float64。记住这个张量为四维[batch, in_height, in_width, in_channels],batch应该是指每次feed给网络的数据的个数,和mini-batch gradient descend有关;中间是长宽两项;最后是通道,灰度为1,RGB等为3

# filter: 输入的卷积核,也是四维[filter_height,filter_width,in_channels,channel_multiplier],前两维是尺寸比如3x3,2x2(注意是可以2x2的,这个涉及到非对称卷积核),第三维等于 in_channels,第四维是输出通道数,也就是你要输出的通道数,也就是你要使用的卷积核数

# strides: 一个长度是4的一维整数类型的数组,一般设为[1,1,1,1],注意第一个和第四个"1”固定不变(我试过改了结果不变,并且没有意义)中间的两个1,就是横向步长和纵向步长,意思是卷积核不一定是一步一步的滑动的。

# padding: 有两个值‘SAME’和'VALID',前者使得卷积后图像尺寸不变;后者尺寸变化

# use_cudnn_on_gpu: 在gpu上处理,tensorflow-gpu都默认设为了True

# data_format=None, Name=None 这两项请博友们自己查查,应该问题不大,Name应该与TensorFlow的图结构以及Session(会话)有关系;data_format的默认值应该为'NHWC',及张量维度的顺序应该是batch个数,高度,宽度和通道数。

可以说, tf.nn.conv2d就是处理的典型的卷积,例子和图示如下:

1 input_data =tf.Variable(np.random.rand(10,9,9,3),dtype=np.float32)
2 filter_data = tf.Variable(np.random.rand(2,2,3,2),dtype=np.float32)
3 y = tf.nn.conv2d(input_data,filter_data,strides=[2,5,5,3],padding='SAME') #中间5,5大家自己设置一下,自己感受
4 y.shape

结果是 TensorShape([Dimension(10), Dimension(2), Dimension(2), Dimension(2)]) 

TensorFlow中卷积    CNN中的卷积核及TensorFlow中卷积的各种实现

 

2  tf.nn.depthwise_conv2d(input, filter, strides, padding, rate=None, name=None, data_format=None)

与1的不同有有两点:

1. depthwise_conv2d将不同的卷积核独立地应用在in_channels的每个通道:我们一般对于三通道图像做卷积,都是先加权求和再做卷积(注意先加权求和再卷积与先卷积再加权求和结果一样),形象化描述就是我先把3通道压扁成1通道,在把它用x个卷积核提溜成x通道(或者我先把3通道用x个卷积核提溜成3x个通道,再分别压扁得到x通道); 而depthwise_conv2d就不加权求和了,直接卷积,所以最后输出通道的总数是in_channels*channel_multiplier

2. rate参数是一个1维向量,of size 2,由两个元素组成,这个参数与atrous convolution(孔卷积)和感受野有关,我下面会给出参考链接。注意, If it is greater than 1, then all values of strides must be 1. 

 

3 tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, rate=None, name=None, data_format=None)

#特殊参数:

# depthwise_filter。一个张量,数据维度是四维[filter_height,filter_width,in_channels,channel_multiplier],如1中所述,但是卷积深度是1,如2中所述。

# pointwise_filter。一个张量,数据维度是四维[1,1,in_channels*channel_multiplier,out_channel]

tf.nn.separable_conv2d是利用几个分离的卷积核去做卷积。首先用depthwise_filter做卷积,效果与depthwise_conv2d相同,然后用1x1的卷积核pointwise_filter去做卷积。实例图如下:

TensorFlow中卷积    CNN中的卷积核及TensorFlow中卷积的各种实现

这个理解困难就是最后一步,pointwise_filter是什么?需要说明的是,我只知道原理,我还不知道这样做的目的是什么。最后pointwise原理很简单,就和2中我说过的一样,我先把DM*in_channels(即in_channels*channel_multiplier)个通道压扁成1个通道,再用pointwise_filter这个1*1的卷积核提溜成out_channel个通道,所以pointwise_filter相当于out_channel个scalar。

例子如下:

1 1 input_data = tf.Variable(np.random.rand(10,9,9,3),dtype=np.float32)
2 2 depthwise_filter = tf.Variable(np.random.rand(2,2,3,5),dtype=np.float32)
3 3 pointerwise_filter = tf.Variable(np.random.rand(1,1,15,20),dtype=np.float32)
4 4 #out_channels >= channel_multiplier * in_channels
5 5 y =tf.nn.separable_conv2d(input_data, depthwise_filter, pointerwise_filter, strides = [1,1,1,1], padding='SAME')
6 y.shape

结果是 TensorShape([Dimension(10), Dimension(9), Dimension(9), Dimension(20)])

 

参考资料:

《深度学习原理与Tensorflow实践》
《TensorFlow技术解析与实战》

Tensorflow(API MASTERT),也就是API Documentation

孔卷积或者扩张卷积

图的出处

声明:

1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论。

2. 我不确定的地方用了“应该”二字

首先,通俗说一下,CNN的存在是为了解决两个主要问题:

1. 权值太多。这个随便一篇博文都能解释

2. 语义理解。全连接网络结构处理每一个像素时,其相邻像素与距离很远的像素无差别对待,并没有考虑图像内容的空间结构。换句话说,打乱图像像素的输入顺序,结果不变。

然后,CNN中的卷积核的一个重要特点是它是需要网络自己来学习的。这一点很简单也很重要:一般的卷积核如sobel算子、平滑算子等,都是人们根据数学知识得到的,比如求导,平均等等。所以一般的人工卷积核是不能放进卷积层的,这有悖于“学习”的概念。我们神经网络就是要自己学习卷积核的参数。来提取人们想不到甚至是无法理解的空间结构或特征。其他特征包括全局共享(一个卷积核滑动一整张图像),多核卷积(用一个卷积核只能提取一种空间结构或特征)。

最后,说一说TensorFlow中卷积的各种实现API(经常用到的):

import tensorflow as tf #自己去加,下面用tf代替tensorflow模块

1  tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, data_format=None, Name=None)

#输入:

# input: 一个张量。数据类型必须是float32或者float64。记住这个张量为四维[batch, in_height, in_width, in_channels],batch应该是指每次feed给网络的数据的个数,和mini-batch gradient descend有关;中间是长宽两项;最后是通道,灰度为1,RGB等为3

# filter: 输入的卷积核,也是四维[filter_height,filter_width,in_channels,channel_multiplier],前两维是尺寸比如3x3,2x2(注意是可以2x2的,这个涉及到非对称卷积核),第三维等于 in_channels,第四维是输出通道数,也就是你要输出的通道数,也就是你要使用的卷积核数

# strides: 一个长度是4的一维整数类型的数组,一般设为[1,1,1,1],注意第一个和第四个"1”固定不变(我试过改了结果不变,并且没有意义)中间的两个1,就是横向步长和纵向步长,意思是卷积核不一定是一步一步的滑动的。

# padding: 有两个值‘SAME’和'VALID',前者使得卷积后图像尺寸不变;后者尺寸变化

# use_cudnn_on_gpu: 在gpu上处理,tensorflow-gpu都默认设为了True

# data_format=None, Name=None 这两项请博友们自己查查,应该问题不大,Name应该与TensorFlow的图结构以及Session(会话)有关系;data_format的默认值应该为'NHWC',及张量维度的顺序应该是batch个数,高度,宽度和通道数。

可以说, tf.nn.conv2d就是处理的典型的卷积,例子和图示如下:

1 input_data =tf.Variable(np.random.rand(10,9,9,3),dtype=np.float32)
2 filter_data = tf.Variable(np.random.rand(2,2,3,2),dtype=np.float32)
3 y = tf.nn.conv2d(input_data,filter_data,strides=[2,5,5,3],padding='SAME') #中间5,5大家自己设置一下,自己感受
4 y.shape

结果是 TensorShape([Dimension(10), Dimension(2), Dimension(2), Dimension(2)]) 

TensorFlow中卷积    CNN中的卷积核及TensorFlow中卷积的各种实现

 

2  tf.nn.depthwise_conv2d(input, filter, strides, padding, rate=None, name=None, data_format=None)

与1的不同有有两点:

1. depthwise_conv2d将不同的卷积核独立地应用在in_channels的每个通道:我们一般对于三通道图像做卷积,都是先加权求和再做卷积(注意先加权求和再卷积与先卷积再加权求和结果一样),形象化描述就是我先把3通道压扁成1通道,在把它用x个卷积核提溜成x通道(或者我先把3通道用x个卷积核提溜成3x个通道,再分别压扁得到x通道); 而depthwise_conv2d就不加权求和了,直接卷积,所以最后输出通道的总数是in_channels*channel_multiplier

2. rate参数是一个1维向量,of size 2,由两个元素组成,这个参数与atrous convolution(孔卷积)和感受野有关,我下面会给出参考链接。注意, If it is greater than 1, then all values of strides must be 1. 

 

3 tf.nn.separable_conv2d(input, depthwise_filter, pointwise_filter, strides, padding, rate=None, name=None, data_format=None)

#特殊参数:

# depthwise_filter。一个张量,数据维度是四维[filter_height,filter_width,in_channels,channel_multiplier],如1中所述,但是卷积深度是1,如2中所述。

# pointwise_filter。一个张量,数据维度是四维[1,1,in_channels*channel_multiplier,out_channel]

tf.nn.separable_conv2d是利用几个分离的卷积核去做卷积。首先用depthwise_filter做卷积,效果与depthwise_conv2d相同,然后用1x1的卷积核pointwise_filter去做卷积。实例图如下:

TensorFlow中卷积    CNN中的卷积核及TensorFlow中卷积的各种实现

这个理解困难就是最后一步,pointwise_filter是什么?需要说明的是,我只知道原理,我还不知道这样做的目的是什么。最后pointwise原理很简单,就和2中我说过的一样,我先把DM*in_channels(即in_channels*channel_multiplier)个通道压扁成1个通道,再用pointwise_filter这个1*1的卷积核提溜成out_channel个通道,所以pointwise_filter相当于out_channel个scalar。

例子如下:

1 1 input_data = tf.Variable(np.random.rand(10,9,9,3),dtype=np.float32)
2 2 depthwise_filter = tf.Variable(np.random.rand(2,2,3,5),dtype=np.float32)
3 3 pointerwise_filter = tf.Variable(np.random.rand(1,1,15,20),dtype=np.float32)
4 4 #out_channels >= channel_multiplier * in_channels
5 5 y =tf.nn.separable_conv2d(input_data, depthwise_filter, pointerwise_filter, strides = [1,1,1,1], padding='SAME')
6 y.shape

结果是 TensorShape([Dimension(10), Dimension(9), Dimension(9), Dimension(20)])

 

参考资料:

《深度学习原理与Tensorflow实践》
《TensorFlow技术解析与实战》

Tensorflow(API MASTERT),也就是API Documentation

孔卷积或者扩张卷积

图的出处

本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:TensorFlow中卷积 CNN中的卷积核及TensorFlow中卷积的各种实现 - Python技术站

(0)
上一篇 2023年4月8日
下一篇 2023年4月8日

相关文章

  • 一文理解深度学习,卷积神经网络,循环神经网络的脉络和原理4-循环神经网络,LSTM

        循环神经网络很早就有了,其结构如下图。注意,这里其实只有一个神经网络结构。而不是7个。下图是为了方便表示,一次把7个时间的网络都画在上面。举个翻译的例子,I am hungry 比如在时间1,我们输入了 I,通过神经网络 输出了对应的翻译 我。然后时间2 ,输入了 am。这个时候网络的输入不但是 am,还有上次 I的隐层的输出。就相当于,网络不但考虑…

    2023年4月8日
    00
  • Keras Xception Multi loss 细粒度图像分类

    作者: 梦里茶 如果觉得我的工作对你有帮助,就点个star吧 关于 这是百度举办的一个关于狗的细粒度分类比赛,比赛链接: http://js.baidu.com/ 框架 Keras Tensorflow后端 硬件 Geforce GTX 1060 6G Intel® Core™ i7-6700 CPU Memory 8G 模型 Xception提取深度特征 …

    2023年4月6日
    00
  • 【玩转华为云】手把手教你利用ModelArts实现目标物体检测

    本篇推文共计2000个字,阅读时间约3分钟。 华为云—华为公司倾力打造的云战略品牌,2011年成立,致力于为全球客户提供领先的公有云服务,包含弹性云服务器、云数据库、云安全等云计算服务,软件开发服务,面向企业的大数据和人工智能服务,以及场景化的解决方案。 华为云用在线的方式将华为30多年在ICT基础设施领域的技术积累和产品解决方案开放给客户,致力于提供稳定可…

    2023年4月8日
    00
  • 利用卷积神经网络(VGG19)实现火灾分类(附tensorflow代码及训练集)

    源码地址 https://github.com/stephen-v/tensorflow_vgg_classify 1. VGG介绍 1.1. VGG模型结构 1.2. VGG19架构 2. 用Tensorflow搭建VGG19网络 3. 训练网络 参考文献 1.1. VGG模型结构 VGG网络是牛津大学Visual Geometry Group团队研发搭建…

    2023年4月8日
    00
  • 机器学习算法–集成学习

    1. 个体和集成      集成学习通过构建并结合多个“个体学习器”来完成学习任务。个体学习器通常由一个现有的学习算法从训练数据产生,若集成中只包含同种类型的个体学习器,称为同质集成;若包含不同类型的个体学习器,为异质集成。同质集成中的个体学习器也成为“基学习器”。     如何产生并结合“好而不同”的个体学习器,恰是集成学习研究的核心。     根据个体学…

    机器学习 2023年4月10日
    00
  • Caffe Blob测试

    本例子来源于《21天实战Caffe》 代码如下: #include <vector> #include <iostream> #include <caffe/blob.hpp> using namespace caffe; using namespace std; int main(void) { Blob<floa…

    Caffe 2023年4月6日
    00
  • 机器学习之Anaconda介绍

    最受欢迎的Python / R数据科学发行版 轻松安装1,400多个Python / R数据科学包并管理您的包,依赖项和 环境 – 只需单击一下按钮即可。免费和开源。 ​ 数据科学图书馆 Anaconda数据科学图书馆 超过1,400个Anaconda策划和社区数据科学包 使用您喜欢的IDE开发数据科学项目,包括Jupyter,JupyterLab,Spyd…

    机器学习 2023年4月12日
    00
  • 利用卷积进行序列到序列学习

    论文:https://arxiv.org/pdf/1705.03122.pdf 译文:利用卷积进行序列到序列学习 摘要 序列到序列学习的流行方法是,利用循环神经网络把一个输入序列映射到一个可变长度的输出序列。我们提出一种完全基于卷积神经网络的架构。相比RNN,训练可以完全并行,因此可以更好地利用GPU的算力,另外,优化也更容易,因为输入长度的非线性个数是固定…

    卷积神经网络 2023年4月5日
    00
合作推广
合作推广
分享本页
返回顶部