针对ID3算法存在的一些问题,1993年,Quinlan将ID3算法改进为C4.5算法。该算法成功地解决了ID3算法遇到的诸多问题,发展成为机器学习的十大算法之一。
C4.5并没有改变ID3的算法逻辑,基本的程序结构仍与ID3相同,但在节点的划分标准上做了改进。C4.5使用信息增益率(GainRatio)来替代信息增益(Gain)进行特征的选择,克服了信息增益选择特征时偏向于特征值个数较多的不足。
信息增益率:
GainRatio(S,A) = Gain(S,A) / SplitInfo(S,A)
其中Gain(S,A)就是ID3算法中的信息增益,而划分信息SplitInfo(S,A)代表了按照特征A划分样本集S的广度和均匀性。
其中Si到Sc时特征A的C个不同值构成的样本子集。
代码
# C4.5决策树,使用信息增益率确定最优特征 from numpy import * import math import copy import pickle class C45DTree(object): def __init__(self): # 构造方法 self.tree = {} # 生成的树 self.dataSet = [] # 数据集 self.labels = [] # 标签集 # 数据导入函数 def loadDataSet(self, path, labels): recordlist = [] fp = open(path, "r") # 读取文件内容 content = fp.read() fp.close() rowlist = content.splitlines() # 按行转换为一维表 recordlist = [row.split("\t") for row in rowlist if row.strip()] self.dataSet = recordlist self.labels = labels # 执行决策树函数 def train(self): labels = copy.deepcopy(self.labels) self.tree = self.buildTree(self.dataSet, labels) # 创建决策树主程序 def buildTree(self, dataSet, labels): cateList = [data[-1] for data in dataSet] # 抽取源数据集的决策标签列 # 程序终止条件1:如果classList只有一种决策标签,停止划分,返回这个决策标签 if cateList.count(cateList[0]) == len(cateList): return cateList[0] # 程序终止条件2:如果数据集的第一个决策标签只有一个,则返回这个决策标签 if len(dataSet[0]) == 1: return self.maxCate(cateList) # 算法核心: bestFeat,featValueList = self.getBestFeat(dataSet) # 返回数据集的最优特征轴 bestFeatLabel = labels[bestFeat] tree = {bestFeatLabel: {}} del (labels[bestFeat]) # 抽取最优特征轴的列向量 for value in featValueList: # 决策树递归生长 subLabels = labels[:] # 将删除后的特征类别集建立子类别集 # 按最优特征列和值分隔数据集 splitDataset = self.splitDataSet(dataSet, bestFeat, value) subTree = self.buildTree(splitDataset, subLabels) # 构建子树 tree[bestFeatLabel][value] = subTree return tree # 计算出现次数最多的类别标签 def maxCate(self, catelist): items = dict([(catelist.count(i), i) for i in catelist]) return items[max(items.keys())] # 计算信息熵 def computeEntropy(self, dataSet): datalen = float(len(dataSet)) cateList = [data[-1] for data in dataSet] # 从数据集中得到类别标签 # 得到类别为key、出现次数value的字典 items = dict([(i, cateList.count(i)) for i in cateList]) infoEntropy = 0.0 # 初始化香农熵 for key in items: # 香农熵: prob = float(items[key]) / datalen infoEntropy -= prob * math.log(prob, 2) return infoEntropy # 划分数据集;分隔数据集;删除特征轴所在的数据列,返回剩余的数据集 # dataSet:数据集 axis:特征轴 value:特征轴的取值 def splitDataSet(self, dataSet, axis, value): rtnList = [] for featVec in dataSet: if featVec[axis] == value: rFeatVec = featVec[:axis] # list操作:提取0~(axis-1)的元素 rFeatVec.extend(featVec[axis + 1:]) # list操作:将特征轴(列)之后的元素加回 rtnList.append(rFeatVec) return rtnList # 计算划分信息(SpilitInfo) def computeSplitInfo(self, featureVList): numEntries = len(featureVList) featureValueListSetList = list(set(featureVList)) valueCounts = [featureVList.count(featVec) for featVec in featureValueListSetList] # 计算香农熵 pList = [float(item) / numEntries for item in valueCounts] lList = [item * math.log(item, 2) for item in pList] splitInfo = -sum(lList) return splitInfo, featureValueListSetList # 使用信息增益率划分最优节点 def getBestFeat(self, dataSet): Num_feats = len(dataSet[0][:-1]) totality = len(dataSet) BaseEntropy = self.computeEntropy(dataSet) ConditionEntropy = [] # 初始化条件熵 splitInfo = [] # 计算信息增益率 allFeatVList = [] for f in range(Num_feats): featList = [example[f] for example in dataSet] [splitI, featureValueList] = self.computeSplitInfo(featList) allFeatVList.append(featureValueList) splitInfo.append(splitI) resultGain = 0.0 for value in featureValueList: subSet = self.splitDataSet(dataSet, f, value) appearNum = float(len(subSet)) subEntropy = self.computeEntropy(subSet) resultGain += (appearNum/totality) * subEntropy ConditionEntropy.append(resultGain) # 总条件熵 infoGainArray = BaseEntropy * ones(Num_feats) - array(ConditionEntropy) infoGainRatio = infoGainArray / array(splitInfo) # C4.5信息增益的计算 bestFeatureIndex = argsort(-infoGainRatio)[0] return bestFeatureIndex, allFeatVList[bestFeatureIndex] # 分类 def predict(self, inputTree, featLabels, testVec): root = list(inputTree.keys())[0] # 树根节点 secondDict = inputTree[root] # value-子树结构或分类标签 featIndex = featLabels.index(root) # 根节点在分类标签集中的位置 key = testVec[featIndex] # 测试集数组取值 valueOfFeat = secondDict[key] if isinstance(valueOfFeat, dict): classLabel = self.predict(valueOfFeat, featLabels, testVec) # 递归分类 else: classLabel = valueOfFeat return classLabel # 持久化 def storeTree(self, inputTree, filename): fw = open(filename, 'wb') pickle.dump(inputTree, fw) fw.close() # 从文件抓取树 def grabTree(self, filename): fr = open(filename, 'rb') return pickle.load(fr) #训练 dtree = C45DTree() dtree.loadDataSet("/Users/FengZhen/Desktop/accumulate/机器学习/决策树/决策树训练集.txt", ["age", "revenue", "student", "credit"]) dtree.train() print(dtree.tree) #持久化 dtree.storeTree(dtree.tree, "/Users/FengZhen/Desktop/accumulate/机器学习/决策树/决策树C45.tree") mytree = dtree.grabTree("/Users/FengZhen/Desktop/accumulate/机器学习/决策树/决策树C45.tree") print(mytree) #测试 labels = ["age", "revenue", "student", "credit"] vector = ['0','1','0','0'] print(dtree.predict(mytree, labels, vector))
本站文章如无特殊说明,均为本站原创,如若转载,请注明出处:机器学习-决策树-C4.5决策树 - Python技术站